Deprecating groff for BSD manual display

Kristaps Dzonsons*

Swedish Royal Institute of Technology

Abstract

There are few GPL-licensed utilities remaining in
BSD base installations, most of them written in
C++. groff, GNU’s roff text-processing language
implementation, claims a not insignificant share of
this count. Why does groff still persist in base?
Although its text-processing features have been
mostly usurped by KTEX, groff persists in order
to render Unix manual pages. In this paper, we in-
troduce mdocml, a compiler for mdoc documents.
mdocml replaces a very specific function of groff —
namely, that of rendering mdoc documents for one
or more output devices. It’s our intention, in con-
tributing this tool, to deprecate groff as the default
utility for Unix manual page display; by doing so,
and presuming that manual display is the primary
usage of groff, we intend to decouple BSD base in-
stallations from another GPL and C++ tool, which
constitutes a considerable goal of the BSD-licensed
systems.

1 Introduction

The history of the groff! utility extends to the ear-
liest implementations of Unix. In fact, the initial
popularity of Unix is almost certainly linked to its
providing a flexible text-processing system[4]. This
history, and related historical intaglios, entirely di-
gress from the focus of this document, which con-
sists of the roff type-setting language, compilers,
and the deprecation of a considerable GPL and
C++ system from base BSD installations.

Our document will focus on the OpenBSD system
when giving concrete examples. We note that the
other BSD operating systems — FreeBSD, NetBSD

*kristaps@kth.se
Thttp://www.gnu.org/software/groff/

and DragonFlyBSD — operate similarly.

We'll begin with an in-depth analysis of the roff
type-setting language. Formally speaking, we’ll
find roff to implement a context-free grammar;
however, our analysis will focus primarily on roff
as it relates to the display of Unix manual pages.

Following an understanding of roff, we’ll analyse
the Unix troff utility for compiling roff documents.
troff implements only the compilation phase of roff
to an intermediate output format; thus, we’ll also
consider the remaining pipe-line of tools to render
roff documents, mixed with pre-processor domain-
encoded sections, to a specific output device.

Since the focus of this document is on the depreca-
tion of groff, we’ll briefly examine the GNU imple-
mentation of troff and the other elements of the roff
processing pipe-line. Our analysis will also consider
the utility of roff on modern systems, forming the
basis of our case for deprecation.

Finally, we’ll introduce mdocml?, a tool for compil-
ing un-mixed mdoc documents. mdocml interfaces
with a library for parsing mdoc documents, libm-
doc, which produces an abstract syntax tree com-
pletely describing its input. With an intact tree,
mdocml is able to convert to any number of out-
puts, and thus any number of rendering devices. In
keeping with our focus on mdocml as a replacement
for groff in displaying manual pages, we’ll focus on
a terminal-encoding output device.

Furthermore, we’ll demonstrate how the transla-
tion of mdoc documents into an intermediate, un-
ambiguous abstract syntax tree allows for clean sep-
aration of the parsing mechanism from its output
devices. In doing so, we introduce mdocml for pro-
ducing both terminal-encoded output, toward re-
placing groff, as well as producing HTML output,

2http://mdocml.bsd.lv/

deprecating the many ad hoc systems for rendering
Unix manuals for on-line display. In doing both,
we hope to free BSD operating systems from both
a heavy-weight GPL/C++ utility.

2 roff Language

In the literature, the term “roff” may refer to
the language roff, the processing tool-chain for roff
documents, or the historic utility itself. In this doc-
ument, we italicise roff when referring to it as a
language, otherwise, we’ll specifically clarify usage.

A full analysis of the roff language is beyond the
scope of this document. Thus, we refer to [1] and [3]
for complete study of the relevant systems. Most
of our examples in this section draw from [1].

Formally, roff is a context-free grammar. roff doc-
uments are composed of input lines of two ontolog-
ical categories: parse-able text, which begins with
the control character “.” and contains function-
like macros; and free-form text, which constitute
the body of a prior scope.

In other words, free-form lines are interpreted ac-
cording to the parser state, while parsed lines con-
sist of tokens (“macros”) affecting the programme
state.

.\" —-*- macro opens scope —*-
.ul 1
This text is underlined.

Parsed roff tokens are described by a flexible and
powerful grammar, which includes partial loops,
branch instructions and arithmetic operators com-
mon to most Turing-complete languages. The fol-
lowing demonstrates arithmetic and a simple con-
ditional:

.\" —-x- arithmetic: subtraction
.nr val \\n(val-2

.\" -x- conditional: strcmp

.if stringlstring2 stuff

Importantly, roff allows for strongly-prototyped,
opaque function blocks, called macros, to be de-
fined at run-time. Macro packages, like function

libraries, provide document authors with a subset
of the original language. This simplifies the produc-
tion of syntactically-similar documents, as authors
need only refer to their domain-specific macros and
may ignore the powerful but more-complex roff su-
perset.

The following simple macros produces small-caps
for the initial argument:

.de SM
\s-2\\$1\s+2

Executing .SM TROFF produces “TROFF”.

Unix manual pages are conventionally written with
two macro packages: man and mdoc. As with roff,
we italicise mdoc and man when referring to the
macro languages.

Of these two, we focus on mdoc, which is used for
BSD-style manuals. BSD operating systems con-
ventionally use the mdoc for manuals in base in-
stallations, although manual authors are free to use
general roff invocations. The mdoc macros are doc-
umented on Unix systems under the mdoc.samples
and mdoc in-system manuals.

By using a strongly-prototyped, limited subset of
the roff language, writing technical manuals is con-
siderably simplified — this is especially useful to pro-
grammers already burdened with their program-
ming language of choice, with little time to learn
another for their documentation. Since most man-
uals follow a conventional syntax, the limitations of
mdoc versus generalised roff go largely unnoticed.

Earlier in this section, we noted that roff imple-
ments a context-free grammar; in general, such
grammars are straight-forward to programmati-
cally scan and parse. Unfortunately, since macros
describe opaque bodies of roff tokens, the set of
macros in a package may not itself implement a
context-free grammar. This is an effect of mask-
ing transitions in the deterministic state machine
described by the context-free grammar. Although
a well-designed macro package may possibly be
context-free, the mdoc package is not: it is, instead,
context-sensitive.

We demonstrate this with the following example:

\" First list:

.Bl -column "xxxxxx" "xxXXXX"
It 1 Ta 2

.E1

.\" Second list:

.Bl -tag

It 1 Ta 2

.E1

In defining the first list as columnar, the Ta macro
describes a break between columns; in the second,
the Ta is not interpreted. In a context-free gram-
mar, this construction is disallowed. The impor-
tance of this discrepancy will be of particular rel-
evance later in this document when we consider
implementing a compile directly for mdoc in or-
der, amongst other reasons, to bypass the time-
consuming effort of implementing the entire roff
language.

3 troff Utility

The troff utility is a compiler accepting roff input
and optional macro definitions, and producing an
intermediate output, referred to as “troff output”
and formally documented in [2]. This output is
subsequently rendered to an output by device by
other utilities: it abstractly describes the layout
and style of a document.

In terms of Unix manuals, an mdoc document is
accepted by the troff utility along with the mdoc
macro definitions. The compiler in-lines the opaque
macro bodies as specified by the macro prototypes;
the produced output is interpreted as pure roff and
converted into the intermediate language.

The transition between roff, which may be mixed
with macro invocations, and intermediate output
conceals a considerable transformation: while in-
termediate output may be reconstituted fully into
roff, albeit not necessarily syntax-equivalent with
the original document (according to the formal,
theoretic properties of context-free grammars), the
syntax introduced by using macro invocations will
generally be lost.

In other words, the annotation of the macro is lost
when converting into the intermediate form. We

demonstrate with the following mdoc macro:
.Va variable

The mdoc macro annotates the “variable” param-
eter as a source code variable; the produced roff
code is as follows (second line truncated to four ar-
guments):

.ds mN Va
.aV \\$1 \\$2 \\$3 \\$4

The aV macro, with mN defined as Va, eventually
transforms the parameters to a font transformation
of 12n.

Intermediate output similarly labels the “variable”
text as having a font size. Thus, the informal anno-
tations introduced by invoking macros are necessar-
ily redacted. The importance of this will become
clear when we consider wanting to compile mdoc
documents to and from various intermediate for-
mats without loss of annotations that encode the
meaning, not the style, of data.

4 troff Pipe-line

The troff pipe-line centres on the troff utility. It
is divided into pre-processors and post-processors,
which may alternately be described as pre-troff and
post-troff. Pre-troff utilities produce roff output,
which is accepted by the troff utility; post-troff util-
ities accept the intermediate language and render
to their respective output mediums.

troff pre-processors accept domain-encoded input,
usually roff mixed with domain-encoded sections,
and replace domain-encoded sections with roff.
Since a pipe-line may include any number of pre-
processors, it’s clear that an input document may
include several non-overlapping domain-encoded
sections; by the time the pre-processing phase com-
pletes, this sections should be replaced and the re-
sulting document be well-formed roff.

The reason for this method, instead of providing
complex, domain-specific macros, is largely flexibil-
ity. Encoding mathematical or chemical formulae,

for example, may be easy to do with a domain-
specific language, but very complicated when op-
erating within the limitations imposed by roff or
strongly-prototype roff macros. Two standard pre-
processors, eqn and chm, do exactly this.

Furthermore, pre-processors are clued as to the de-
sired output device, allowing them to choose the
format of their output. This is particularly use-
ful when comparing whether to write formulae to a
text or graphical terminal.

Post-processors accept intermediate language and
render the document to their respective output
mediums. The most popular, mentioned later in
this document, is grotty, which terminal-encodes
output.

5 groff Utility

groff is a GPL-licensed implementation of the roff
pipe-line. The term “groff” describes both the suite
of utilities that collectively render roff documents,
and the stand-alone executable orchestrating this
pipe-line. In this document, we generally refer to
groff as encompassing the suite of utilities as a
whole.

Although groff introduces a number of extensions,
it’s largely feature-compatible with the original
Unix troff pipe-line. The current implementation
is written in C++, with the source code alone
amounting to roughly 60 000 lines of mixed C
and C++ source, which implement standard pre-
processors, the troff utility, and standard post-
Processors.

The existence of groff in BSD operating systems
poses an issue: not only is the system GPL li-
censed, which conflicts with the BSD license, but
the utility is written in C+4. This prevents dep-
recating the industry-standard GNU compiler col-
lection, gce, with a simpler C-only compiler.

6 Conventions

In this section, we examine the most common us-
age of groff in modern BSD systems. We address
OpenBSD for specific invocations; FreeBSD and

NetBSD operate similarly.

There are three in-system invocations of groff: for
on-line conversion of mdoc documents to terminal-
encoded output with the man utility; when generat-
ing a cached “catman” manual; or when compiling
various kernel documents. We discount the third
scenario as the rendered documents appear not to
be in use.

In the first case, the man utility sources the
man.conf file to determine how best to display
manuals (what follows is a relevant fragment):

_build
_build

.[1-9n] nroff -man %s
.tbl tbl %s | nroff -man

Within system compilation, the bsd.man.mk Make-
file fragment invokes, similarly to the man utility,
groff or tbl as piped to groff. Additionally, the
bsd.man.mk script can generate Postscript output
(with the -Tps instead of the -Tascii or -~Tlatinl
arguments for terminal output).

A tool deprecating groff must handle, in decreasing
order of importance, on-line display of mdoc doc-
uments by piping through groff; off-line display by
caching groff output in a file; Postscript output;
and, least, tbl pre-processed tbl manual files.

In the remaining sections of this document, we in-
troduce the mdocml tool, which explicitly compiles
mdoc documents into a variety of output formats.
This satisfies, as listed above, the majority of groff
utility.

7 mdocml Utility

The mdocml tool is composed of two components: a
scanner-parser, which produces an abstract syntax
tree representing the mdoc input; and the output
filter, which accepts the abstract syntax tree and
transforms it into a domain-encoded format.

The mdocml utility uses a simplified version of the
troff pipe-line. Foremost, no pre-processors are nec-
essary or allowed, as input is assumed to be well-
formed mdoc. This is overwhelmingly the case in
those manuals distributed with the BSD systems,

although some complexities do exist (see §8 for de-
tails).

Like troff, mdocml produces an intermediate out-
put in the form of an abstract syntax tree (or simply
“AST?”), which fully encodes the annotations of the
original mdoc.

Finally, the AST is piped an output filter, which
re-encodes the AST in a domain-specific language.
This is most commonly terminal-encoded output,
but may also be HT'ML for on-line manuals, or PDF
or PS for printable media.

In accepting mdoc macro input, mdocml focusses
on the meaning of tokens, not their style. This
allows output filters to evaluate stylistic annotation
based on the original annotation: instead of the
AST obscuring a variable as a font-size, this logic
is delegated to the output filter.

7.1 mdocml AST

In this section, we discuss the reasoning behind and
structure of the mdocml intermediate abstract syn-
tax tree. This tree is particularly important be-
cause it must unambiguously encode, in a regular
fashion, context-sensitive and irregular data.

A side-effect of generating an AST is that the con-
tents of an mdoc document are fully validated. Val-
idation covers argument counts, layout, compatibil-
ity with groff and nroff, and so on.

The AST itself is generated by the libmdoc function
library, which is interfaced by the mdocml utility.
The libmdoc library is distributed with the mdocml
package as a static library that may be interfaced
by any caller. In this simple library, a parsing ses-
sion is opened, lines are parsed, then the result is
collected after all lines are parsed.

The syntax tree is composed of typed nodes, ex-
pressed by the following diagram in an abbrevi-
ated Wirth form, where capitalised non-terminals
are tree nodes and terminals are always tree leaves:

MDOC = NODE {NODE}

NODE = ELEM | BLK | text

ELEM = {text}

BLK = (HEAD BODY | HEAD | BODY) [TAIL]

HEAD = {[ELEM | BLK | {text}] {punct}}
BODY = [ELEM | BLK | {text}] {punct}
TAIL = {text} {punct}

That is to say, a document contains one or more
nodes. Nodes are of type element, block, or un-
typed text. An element node may optionally con-
tain text; a block node contains at least a head
and/or body node and optionally a tail, all of which
may be separated by un-typed punctuation nodes
(a sub-type of text node that only contains punc-
tuation).

Informally, an element corresponds to an in-line
value such as an italicised or underlined parame-
ter, or possibly a variable or function type.

Blocks are somewhat more complicated, as they are
scoped to have a head and possibly a body and tail.
These correspond to lists and block displays.

Syntactically, elements are macros with line param-
eters, while blocks usually, but not necessarily, have
multi-line scope.

The following demonstrates a simple document
fragment of elements:

.Va varil
.Va var2 var3

This parses into the following parse tree:

MDOC
ELEMENT
TEXT: :varl
ELEMENT
TEXT: :var2
TEXT: :var3

A more complex example includes a block scope:

.Sh NAME
.B1
It
Hello
.E1

World

—enum

This parses into the following nested block (with a
spanner for clarity of tree siblings):

MDOC
BLOCK
HEAD
TEXT: :NAME
BODY
+-BLOCK
| BODY
| TEXT: :Hello
+-TEXT: :World

Our choice in this ontology is largely to fit the ir-
regular syntax of mdoc macros. An example of ir-
regularity is in parsing lists, whose sub-type com-
positions are sensitive to the context of the caller.

.Bl -column "xxx
It F1 1 Ta F1 2
.E1

.F1 1 Ta F1 2

XXX

In the above example, the Ta macro is interpreted
differently according to its context. In the first case,
the Ta separates different head nodes (columns) for
the list item; in the second case, it’s interpreted as
a text string.

MDOC
BLOCK
HEAD
ELEMENT
TEXT::1
HEAD
ELEMENT
TEXT::2

The list block opened by Bl, which is among the
more complicated macros to represent in regular
form, can have two “head” macros to denote multi-
ple columns only if ~column is included. The latter
invocation is far cleaner:

MDOC
ELEMENT
TEXT::1

TEXT: :Ta
ELEMENT
TEXT::2

Not all block nodes are explicitly opened and closed
(B1 and E1 in the above examples). Implicitly-
scoped nodes, such as Sh, have their scopes closed
out by subsequent invocation. Some implicitly-
scope nodes can close out others, such as a section
Sh closing out contained sub-sections Ss.

Furthermore, not all block nodes span multiple
lines: the quotation macros, such as So and Sc,
may be executed in a single line enclosure.

Due to these and more regularities, the mdocml
parser implemented in libmdoc is ad hoc, meaning
that macros are parsed according to the chain of
parents, siblings, and a table for condition rules.

Internally, the parsing routine, which generates a
sub-tree of the resulting abstract syntax tree, has
three phases for each parsed macro in the line:

1. Parse macro arguments: arguments begin with
hyphens and may contain zero or more values.

2. Pre-validate macro: check for invocation con-
text (list items must be in lists, displays may
not nest, etc.) and sane arguments.

3. Parse child nodes: element text children, block
sub-nodes, and so on.

4. Post-validate macro: check for child node va-
lidity and count, and so on.

5. Perform per-macro actions: setting the resi-
dent document name, prologue values, and so
on.

Post-parsing is the most complex area, as nested
macros must be post-processed recursively when
their scopes close. Post-parsed validity also checks
for groff compatibility, including maximum line ar-
guments, macro argument limitations, strange han-
dling of child text, and so on.

7.2 mdocml Filters

When a parsing session is closed and the AST is
intact, it may be further processed. mdocml may

either generate a binary file representing the AST,
with suffix .mdoc, or pipe it to another utility.

When run without an output filter, mdocml merely
constructs the AST (validating its input) and exits.

mdocml has, at present, two output filters, with one
more in design. The first, mdocml-tree, outputs the
AST in an indented tree. It’s largely intended for
testing.

The second, mdocml-term, generates a terminal-
encoded output similar to running nroff -Tascii
-mandoc. This utility is intended to deprecate us-
age of groff for terminal-encoded output. Inter-
nally, it links to the termcap library routines in
order to format style (bold and underlined strings)
and layout (indentation, centring, and so on).
mdocml-term can either generate decorated text
(with stylistic mode) or un-decorated text.

The third, in development, is mdocml-html. This
filter generates an HTML file from the original
manual, and deprecates various other HTML gen-
erators for manuals such as man.cgi.

8 Status

A considerable amount of work remains to be done
in order to have full compatibility with groff and
other features useful to operators and program-
mers.

The libmdoc parser is generally complete, although
some corner cases (such as multi-head list columns
described in §7.1) are still experimental in terms of
their end design.

The Xo and Xc macros, which extend the number of
arguments for a macro, are un-implemented for list
item heads. Whether to implement this macro pair
is still under debate: although their function has
been long deprecated by groff (which earlier con-
siderably limited the number of arguments), they’re
still in use in a fair number of base installation man-
uals.

An open question is whether to deprecate some ir-
regular groff behaviour, such as the strange syntax
of the At macro and the artificially-limiting maxi-
mum number of line arguments.

mdocml-term is still experimental and has no back-
ward call-syntax compatibility with groff. This
isn’t necessarily a bad idea: mdocml only imple-
ments mdoc, and even when called with -mdoc,
manuals may be mixed with pure roff.

mdocml does not, and probably never will, support
the standard groff pre-processors eqn, refer, and
chm. To date, tbl is the only pre-processor used.
It’s not unreasonable to fold this into the mdocml
parser library: since list item columns (mentioned
in §7.1) are represented by several “head” nodes,
it’s conceivable to design a converted from tbl
to mdoc list-item, or directly parse these within
mdocml. However, to date, only fifteen manuals
make use of this pre-processor.

9 Conclusion

The groff utility consists of over 700 files, totalling
over 200 000 lines of bitmaps, C and C++ source
and headers, groff macros, output device specifica-
tions, and so on. Of these, over 50 000 lines are
C++ sources. These sources are predominantly li-
censed under the GPL. We described the groff util-
ity itself in §5.

As described in §6, the overwhelming use of groff
is for manual display, which decomposes into com-
piling mdoc documents into terminal-encoded text
output. We demonstrated in §7 the capability of
mdocml to match this usage as a sub-set of its func-
tionality.

By deprecating the primary function of groff, the
utility itself may be relegated to the BSD oper-
ating systems’ respective ports (third-party) col-
lections, freeing a considerable chunk of C++ and
GPL sources. Furthermore, by deprecating a con-
siderable C++ code-base, we hope to further step
toward a non-C++ base distribution, without need
for a complex C++ compiler in the base distribu-
tion.

References

[1] Brian W. Kernighan. A troff tutorial, 1978.

2]

Brian W. Kernighan. A typesetter independent
troff. Technical Report 97, Bell Labs, 1981.

Joseph F. Ossanna. Nroff/troff user’s manual.
Technical Report 54, Bell Labs, 1976.

Dennis Ritchie. The evolution of the unix time-
sharing system. In Proceedings of a Sympo-
sium on Language Design and Programming
Methodology, pages 25—36, London, UK, 1980.
Springer-Verlag.

