
Environmental Independence: BSD Kernel TCP/IP in Userspace

Antti Kantee
Helsinki University of Technology

pooka@cs.hut.fi

Abstract
Code is code. In the entire application stack only a very
small fraction of code is special in the sense that it re-
quires the hardware to run in privileged mode. In theory
all the rest can run in either the kernel or user domain,
with the tradeoffs being well-known.

Engineering an operating system core so that the same
code can function both in user and kernel mode alike pro-
vides numerous benefits: testing and development, virtu-
alization, stability and reusability of code in applications.

In the current Unix style, code is divided to kernel
code and userspace code. Although some limited code
modules, such as byte order and address translation rou-
tines may be shared, functionality at large is not available
in both domains.

This paper discusses the nuts and bolts of running the
BSD networking code in userspace. It does not advo-
cate turning BSD into a microkernel operating system,
but rather gives concrete level proof that the kernel net-
working stack and kernel networking applications can be
run in userspace. The virtual userspace networking stack
is measured to be performant enough to be able to satu-
rate a regular network and to be over 10 times faster than
the kernel networking stack running in a machine emu-
lator. An implementation for NetBSD available from the
NetBSD source repository is discussed.

1 Introduction

The BSD networking stack is the industry standard for
TCP/IP interoperability. Despite it being an old, stable
and well-understood piece of code [9, 13], its vast size
makes full comprehension difficult even for experienced
programmers with years of familiarity. This is exacer-
bated by the fact that the networking stack runs in the
kernel, as the kernel is always to be considered to be a
difficult programming environment.

This paper presents rump [7] networking: a method
for running the BSD kernel TCP/IP stack as part of a

userspace process using the Runnable Userspace Meta
Program (rump) framework found in NetBSD [11]. The
rump project aims modify the kernel structure so that ker-
nel code can run equally well both in the kernel environ-
ment and the user environment. All networking stack
code apart from the device driver layer is used directly
from the main kernel - no rewriting, editing or #ifdef
application is done on kernel code. Functionality of rump
networking is equal to that of the in-kernel networking
stack.

The original motivation for the work was running the
kernel NFS file system client in a userspace application.
Since NFS uses the kernel sockets interfaces for commu-
nication with the server, supporting the in-kernel sockets
interface in userspace was necessary.

Apart from the use mentioned in the previous para-
graph, the userspace networking stack can be used for
networking stack debugging, development, instrumenta-
tion and testing. Additionally, the system allows to im-
plement applications which would otherwise require a
full operating system running inside a virtual machine.
One potential example is the TorVM anonymizer ex-
plored in more detail in Chapter 4.4.

The remainder of this paper is laid out in the follow-
ing manner. Chapter 2 describes the implementation in
detail. Chapter 3 evaluates the portability and Chapter 4
focuses on the applications for the technology described
in this paper. Chapter 5 concentrates on evaluating the re-
sult in terms of performance as opposed to a networking
stack running in the kernel domain. Finally, Chapter 6
concludes.

1.1 The Approach

We call the operating system instance our networking
kernel code process is running on the host operating
system or host for short. Having the kernel network-
ing stack run in a userspace process is a common sight.
For instance, when running an operating system in a ma-

chine emulator such as qemu [1], the entire OS kernel
is already running in userspace under emulation. An-
other similar situation is with a usermode operating sys-
tem, such as Usermode Linux [3] or the DragonFly vk-
ernel [5]. Here the host operating system, which is by
implementation required to be the same operating sys-
tem as the usermode operating system, is an analogous
component to the virtual machine.

In these scenarios, the whole operating system, includ-
ing the root file system, processes, etc., runs as a self-
contained package. Communication with the operating
system kernel is done from a process running inside the
virtual operating system. This indirection difference is
further illustrated Figure 1. In this paper we call vir-
tual kernels which are not directly controllable from the
host operating system indirect virtual kernels. Notably,
a usermode operating system might use host processes
to handle its own processes, but since these are isolated
from the host operating system, they are considered indi-
rect as well.

Our approach is to extract only the relevant bits from
the kernel while leaving out complex parts such as ad-
dress space management. The benefits are multiple. This
provides a portable library approach, with the kernel
functionality portable to virtually any platform. The in-
terface with the virtual kernel is a direct library function
call interface, so writing tests and getting useful output
from them is much easier. Finally, less resources from
the host system are consumed since unnecessary compo-
nents such as fork/exec support or file systems are not
being loaded or used. We call this type of process-local
virtual kernel a first class virtual kernel since it is directly
accessible from host processes.

2 Implementation

For the discussion, we define two terms to differentiate
between how we bring functionality to userspace. When
functionality is extracted from the kernel, it is brought to
userspace as such without any code modifications. This
is practical only on a source module granularity, as it will
bring in future modifications as opposed to creating an-
other copy of the routines. Conversely, when functional-
ity is reimplemented, the kernel interfaces are rewritten
for userspace. To give examples, the radix trie routines
are extracted, while the pmap virtual memory routines
are reimplemented.

It should be noted that all the interface and variable
dependencies of functionality both extracted and reim-
plemented should be satisfied or the final program will
not link properly. This can be done either by extracting
the modules depended on or reimplementing unused in-
terfaces as stubs. The main dependency classes of sock-
ets+TCP+IP in the networking stack are: memory allo-

proc: virtual machine

kernel

application

proc: application
lib: kernel

Virtual machine: indirect

Kernel as a library: first class

Figure 1: Two Virtual Kernel Styles

cators, synchronization routines, file descriptor subrou-
tines, pmap, software interrupts, callouts, and miscella-
neous routines such as memcpy() and strlcpy().

We must be able to access the host OS process services
to implement functionality in our virtual kernel. For ex-
ample, we must be able to request more memory from
the host so that we can allocate memory for use in our
virtual kernel. For this purpose, a special rumpuser in-
terface set is defined. It provides access to approximately
40 select routines available in a userspace process names-
pace. While this approach requires explicit handling, it
allows to implement the rumpuser interface for each host
platform based on the interfaces provided by that plat-
form instead of implicit assumptions in the kernel por-
tion of the code. Notably, only reimplemented code can
call rumpuser routines, since the rumpuser interfaces are
not usable in a regular kernel and therefore not used in
extracted code.

2.1 Background

To understand the userspace implementation, we must
first review the basics of the BSD kernel networking im-
plementation [13].

The sockets layer provides an abstracted view of the
networking protocols to the rest of the kernel. Each pro-
tocol family, for example inet6, registers a domain struc-
ture to the kernel containing information about the fam-
ily. Among other information, this structure contains a
pointer to a protocol switch array. The member structures
of the protocol switch array describe each protocol sup-

application

r
u
m
p

k
e
r
n

kernel

user

sockin if_virt

TCP/IP

sockets

etherif

application

r
u
m
p

if_virtsockin

TCP/IP

sockets

k
e
r
n

if_tap

 network network

sockets

Figure 2: sockin vs. if virt

ported by the family and contain access method pointers.
When a socket is created, the relevant protocol switch

is located and attached to the in-kernel socket data struc-
ture. When the sockets layer needs to access the proto-
col, e.g. for sending data, it does so through the protocol
switch. When receiving data, it is up to the protocol to
decide how it wants to map the received data to a socket.
For example, for TCP and UDP this is done using the
inet protocol control block module and usually means
mapping the (laddr,lport,faddr,fport) 4-tuple to the cor-
rect socket.

2.2 Accessing the network
There are two fully supported possibilities for access-
ing the network from our userspace solution. They have
different implications in what they provide and require.
Both are described next and the difference is further il-
lustrated in Figure 2.

• socket layer emulation (sockin): Access to the
network is handled through the host OS’s sockets.
The virtual kernel implements a PF INET network-
ing domain, which provides a mapping between the
protocol switch access routines and the socket sys-
tem calls. The protocol switch array of sockin is
displayed in Figure 3. It only supports features so
far required in use cases. For example, support for
ICMP is missing from sockin.

This approach does not require anything beyond
normal user privileges to setup or use and commu-
nicates with the outside world using the host OS’s

Figure 3: sockin protosw

const struct protosw sockinsw[] = {
{

.pr_type = SOCK_DGRAM, /* UDP */

.pr_domain = &sockindomain,

.pr_protocol = IPPROTO_UDP,

.pr_flags = PR_ATOMIC|PR_ADDR,

.pr_usrreq = sockin_usrreq,

.pr_ctloutput = sockin_ctloutput,
},{

.pr_type = SOCK_STREAM, /* TCP */

.pr_domain = &sockindomain,

.pr_protocol = IPPROTO_TCP,

.pr_flags = PR_CONNREQUIRED
|PR_WANTRCVD|PR_LISTEN
|PR_ABRTACPTDIS,

.pr_usrreq = sockin_usrreq,

.pr_ctloutput = sockin_ctloutput,
}};

IP addresses. It does not run the full networking
stack in userspace and its usefulness is limited to
running kernel consumers of the sockets layer, such
as NFS, in userspace. Additionally, code for each
networking domain is required. Currently, support
is limited to UDP and TCP on IPv4, although this
could be extended to IPv6 with little effort.

• full networking stack (if virt): All the layers of
the networking stack except for the device driver are
run in userspace. Access to the network is handled
through a virtual interface driver, if virt. This driver
communicates with the host networking facilities by
using the host’s Ethernet tap driver, which allows
raw access to a host interface through a character
device node. The tap interface on the host can fur-
ther be bridged with real network interfaces to allow
unrestricted network access from the virtual kernel.

This approach requires superuser privileges to con-
figure, but in return provides the full networking
stack in userspace, along with a unique address for
each virtual interface. This means for example that
port binding does not depend on the ports already in
use on the host OS. It also makes it possible to build
complex virtual networks within one machine using
many virtual kernels.

As both the real TCP/IP stack and sockin both provide
a PF INET domain, they cannot coexist in the same vir-
tual kernel at the same time. This dual approach allows to
run components which just use the kernel sockets layer,
such as the kernel NFS client, without any administrative

hassle or root privileges, but still enables the use of the
full TCP/IP stack when it is desired. This contrasts the
choices in the Alpine [6] userspace networking facility,
where the only option is using an OS-wide port server
daemon, a raw socket and the pcap library.

2.3 Emulating the Kernel

Most functionality used by the kernel networking stack
can be extracted and used as such. A good example is the
mbuf interface. While simple in principle, a reimplemen-
tation would be very complex and error-prone because of
all the intricacies with the interface. Therefore, it was an
obvious candidate for extraction even when it required
extra effort with the mbuf backing pool allocator.

However, not all parts can be extracted. For instance,
we do not get a hardware clock interrupt in userspace.
Therefore, a clock interrupt must be reimplemented if
timers are to work. This chapter discusses reimple-
mented interfaces.

2.3.1 Threading and Concurrency

A large portion of the modern BSD kernel depends
on multiprocessing capabilities and concurrency control.
This includes the ability to create threads and manage
concurrency using primitives such as mutexes and con-
dition variables.

Almost all of this functionality is provided for
userspace programs by the pthread library. The naming
and calling conventions of pthread routines are slightly
different from the kernel, e.g. kernel mutex lock cannot
fail, but in general the mapping is just name translation.
The only exception is the historic tsleep()/wakeup()
interface, but that is essentially a condition variable and
can be implemented by using one.

Multithreading implies thread scheduling. Instead of
the kernel scheduler, this is handled by the pthread sched-
uler. Most of the kernel is under finegrained locking and
will work without problems. However, for code still un-
der the big kernel lock we need to identify all the block-
ing points in the rumpuser interface and wrap those calls
to release and reacquire the biglock. Otherwise, blocking
with the biglock held could deadlock the system.

2.3.2 Soft Interrupts

Soft interrupts are a method of deferring processing.
They are commonly used from a machine interrupt con-
text to schedule work to happen later. A well-known use
in the networking stack is to schedule protocol process-
ing as a soft interrupt once the received packet has been
cleared off the network interface.

In userspace, our thread scheduled device driver re-
ceives packets in a thread context. There is no real rea-
son to defer processing to a soft interrupt, so theoreti-
cally it would be possible to process the packet directly
instead of scheduling a separate soft interrupt. How-
ever, doing the unexpected yields unexpected results: the
NetBSD Ethernet input routine schedules the interrupt
before it enqueues the newly received packet onto the re-
ceive queue. Attempting to process the packet directly in
calling context without separately scheduling a soft inter-
rupt will result in the packet not being on the queue when
the handler runs. It is less work to emulate the system as
closely as possible.

We reimplement a simple soft interrupt framework.
Currently, soft interrupts get scheduled for execution in
a separate thread dedicated to soft interrupt execution.
However, there is room for improvement, as this does not
emulate the current kernel perfectly: a real soft interrupt
will run only on the CPU it is scheduled on. Since rump
does not currently emulate CPUs and hence define the
concept of relinquishing a CPU, the soft interrupt might
run before the caller that scheduled it finishes executing.
This is turn might lead to race conditions such as the one
mentioned in the previous paragraph. However, experi-
ence has show that this is not a practical issue currently.

2.3.3 Timers

Networking depends on having timers present in the sys-
tem. For instance, TCP retransmission depends on retry
when a timeout occurs and each networking protocol can
define a fast and slow timeout, which are called every
200ms and 500ms, respectively. They are centrally ex-
ecuted when a kernel callout timer expires and histori-
cally [13] all work done by protocol timers was done di-
rectly from the fast and slow timeouts. This made it pos-
sible for the system to specify a small number of callouts,
which was beneficial, since the cost using timers was
proportional to the number of timers in the system. It,
however, required checking all possible timeouts when
the timer fired. For example, for TCP this means that the
cost increases with the number of connections regardless
of if timeout processing is required or not.

After an O(1) callout facility for BSD was crafted [2]
and implemented in NetBSD, there was no strict reason
to process all timers from a single callout. In fact, hav-
ing separate callouts for all connections makes process-
ing necessary only when there is a reason for it.

We extract the kernel callout module to userspace. The
module depends on receiving a soft interrupt for doing
processing. We use a timer thread which wakes up every
clock tick and calls the callout hardclock routine. This, if
necessary, schedules a callout soft interrupt for process-
ing the callouts.

3 Portability

The networking stack is in theory portable to all op-
erating systems. However, currently the binary repre-
sentations of various symbols are not likely to be the
same from one system to another. For instance, the size
of struct sockaddr in or the value of the sym-
bol SOCK STREAM may vary from platform to platform.
Therefore, supplying the host representation of these
symbols to the NetBSD first class virtual kernel is not
correct. Likewise, giving the NetBSD kernel representa-
tion of some symbols to the rumpuser interface will con-
fuse the host system.

If the host is any of the BSD systems, the problem is
less severe, since common history means that most sym-
bols will have the same values. Also, the compatibil-
ity code of NetBSD helps with many issues. For exam-
ple, in the development branch leading to NetBSD 6.0
time t was made a 64bit integer. This changed the size
of struct timeval used in the SO RCVTIMEO and
SO SNDTIMEO options of the setsockopt() system
call. However, new values were given to those two sym-
bols. If a call is made with the old value, the NetBSD ker-
nel will assume a 32bit time t field and do compatibil-
ity processing. Since e.g. older versions of NetBSD and
FreeBSD define the old values for SO RCV/SNDTIMEO,
calls from them to rump with the host values will work
even thought they have a 32bit time t.

However, compatibility does not provide a full guaran-
tee. To fully address the problem, the interface between
the host and the first class virtual kernel should be binary-
independent. A viable way to accomplish this is to use
the NetBSD proplib [10] library, which can be used to
manage property lists and transform them to an external
ASCII representation independent of the host operating
system.

4 Applications

Obvious applications for rump networking are rump ap-
plications which need to use the kernel networking facil-
ities. The original motivation was given in the introduc-
tion: the kernel NFS client. Other applications of rump
networking, both from a development and an application
perspective, are presented in this chapter.

4.1 Application Interface
To access the virtual kernel’s network facilities, an in-
terface is required. On a normal system this interface
is the system call interface. However, since the process
containing the virtual kernel is not isolated from the host
system, a regular system call will be directed to the host
kernel instead of the virtual kernel. Therefore, a way of

Figure 4: Adapting ttcp to rump

#include <rump/rump.h>
#include <rump/rump_syscalls.h>

#define accept(a,b,c)\
rump_sys_accept(a,b,c)

#define bind(a,b,c)\
rump_sys_bind(a,b,c)

#define connect(a,b,c) \
rump_sys_connect(a,b,c)

#define getpeername(a,b,c)\
rump_sys_getpeername(a,b,c)

#define listen(a,b) \
rump_sys_listen(a,b)

#define recvfrom(a,b,c,d,e,f)\
rump_sys_recvfrom(a,b,c,d,e,f)

#define sendto(a,b,c,d,e,f)\
rump_sys_sendto(a,b,c,d,e,f)

#define setsockopt(a,b,c,d,e)\
rump_sys_setsockopt(a,b,c,d,e)

#define socket(a,b,c) \
rump_sys_socket(a,b,c)

specifying that the request is directed to the virtual kernel
is required.

So solve this, we provide rump system calls, which
behave exactly like regular system calls, but instead of
trapping to the kernel they make a function call to access
the virtual kernel.

The rump system calls have the same interface
and basename as regular system calls. The only dif-
ference is that they are prefixed with a rump sys
prefix before the system call name. For an example,
rump sys socket(PF INET, SOCK DGRAM,0);
will open a UDP socket in the virtual kernel.

To make an existing application use the virtual kernel
in select places instead of the host kernel, two approaches
are possible:

• link symbol wrappers: In this scenario the pro-
gram is linked with a library which overrides the
desired libc system call stubs. For instance, the
library provides the symbol socket() which just
calls rump sys socket(). For dynamic bina-
ries on most systems just setting LD PRELOAD is
enough. For static binaries the program must be re-
linked.

The benefit of this approach is that it does not re-
quire access to the source code. The downside is
that it may be difficult to control which calls to
wrap and which not to in case the same system call

Figure 5: Network Interface Configuration Using rump syscalls

/* get a socket for configuring the interface */
s = rump_sys_socket(PF_INET, SOCK_DGRAM, 0);
if (s == -1)

err(1, "configuration socket");

/* fill out struct ifaliasreq */
memset(&ia, 0, sizeof(ia));
strcpy(ia.ifra_name, IFNAME);
sin = (struct sockaddr_in *)&ia.ifra_addr;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
sin->sin_addr.s_addr = inet_addr(MYADDR);

sin = (struct sockaddr_in *)&ia.ifra_broadaddr;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
sin->sin_addr.s_addr = inet_addr(MYBCAST);

sin = (struct sockaddr_in *)&ia.ifra_mask;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
sin->sin_addr.s_addr = inet_addr(MYMASK);

/* toss to the configuration socket and see what it thinks */
rv = rump_sys_ioctl(s, SIOCAIFADDR, &ia);
if (rv)

err(1, "SIOCAIFADDR");
rump_sys_close(s);

should be directed to both the host and virtual ker-
nel. A limited number of heuristics can be used in
the wrapper: for instance, if the read() call needs
partial wrapping, the socket() wrapper can return
a file descriptor number which is very unlikely to
be received from the host kernel and use the file de-
scriptor number to decide whether the call should
be directed to the host kernel or the virtual kernel.
However, these heuristics are never fully robust, and
if available, modifying the source may be a better
approach.

• modify the source: In this option the source code is
modified and the application recompiled. The mod-
ification can be done both for all calls of a certain
type by using the C preprocessor as well only cer-
tain calls. A hybrid approach was used to adapt the
ttcp measurement tool used for performance evalua-
tion in Chapter 5. Most of the calls could be handled
by the preprocessor, but the read() and write()
calls were done on a case-by-case basis. The pre-
processor portion is demonstrated in Figure 4.

The benefit of this approach is that there is no need
for heuristics and the control is absolute. The down-
side is that source code is required. Another prob-
lem is that modifying a program is error-prone. Fi-
nally, if a library does the system call, it is not pos-
sible to solve the problem by editing just the appli-
cation. For solving this the wrapper approach might
be effective.

A good technique in figuring out which symbols need
to be wrapped is to use the nm utility. The set of unre-
solved symbols contain the ones needing redirection.

An example of how to configure the address of a net-
working interface is presented in Figure 5.

4.2 Testing and Development

This chapter gives an example of how rump network-
ing can be used to develop and test the kernel TCP/IP
stack. Speaking from the author’s personal experience

bridge0 bridge1

Process 1 Process 2 Process 3

Host X

Echo client

TCP/IP stack (UDP+IP)

tap010.100.100.10

TCP/IP stack (routing) TCP/IP stack (UDP+IP)

Echo server

tap1 tap2 tap310.100.100.1 10.100.200.1 10.100.200.10

Figure 6: Virtual Router Test Setup

with BSD networking stack development [8] 1, devel-
oping infrastructure changes in a userspace program is
multitudes easier than trying to do the same in the ker-
nel, even if using a virtual machine.

As the case study, we illustrate how it is possible to test
a routing setup within one machine using multiple pro-
cesses each containing their own copy of a networking
stack. While the same approach is possible with other
forms of virtualization, as stated in the approach discus-
sion in Chapter 1.1, a first class virtual kernel does not
consume unnecessary resources and thus allows building
more complex tests on the same machine.

The setup is illustrated in Figure 6. We run three pro-
cesses. One of them acts as a router between two subnets.
The two other processes have the router process config-
ured as their default gateway. The tap driver is used as
the backend for all interfaces and the subnets are bridged
together using the host’s bridge driver. As tap and bridge
do not depend on hardware, they can be dynamically cre-
ated on the host to suit the test setup needs.

Since packet routing is done in the kernel, the user
portion of our router process is very simple. It merely has
to configure the relevant interfaces and not accidentally
exit while the kernel library does the forwarding work.
The router’s program body is illustrated in Figure 7.

To test that our setup is functional, we run an echo dae-
mon as one of the endpoint processes and send packets
to it from another endpoint. The measured RTT for this
setup is 0.16 ms. For a comparison, pinging an operat-
ing system running inside qemu on the same machine is
0.24 ms. However, the virtual machine ping has one less
hop than the rump setup and ping is handled on a lower
level in the networking stack, so in reality the difference
is much higher in favor of rump (Chapter 5).

Since we are not interested in transporting packets to

1The implementation described in the cited paper was done on an
embedded operating system called MMLite, which uses the BSD net-
working stack. The ”NTUbig” operating mode of MMLite inspired the
libsockin library described in this paper.

Figure 7: Router main program

int
main(int argc, char *argv[])
{

rump_init();
configure_interfaces();
pause();

return 0;
}

an outside network in this test, it would possible to re-
place the tap and bridge drivers with dedicated driver
which only does interprocess communication. This
would allow building even bigger simulated networks
within a single test host.

4.3 Virtualization

Network stack virtualization allows multiple networking
stack instances to coexist on the system and be used by
various applications. While indirect virtual kernels are a
case of multiple different networking stacks on the same
machine, they are outside the direct use of processes run-
ning on the host system.

On the other hand, the FreeBSD clonable network
stack [14] offers instances of the same native network-
ing stack for applications running on a FreeBSD host.

Like indirect virtual kernels, our approach allows run-
ning multiple different fully isolated networking stacks
on a single host, but the solution is directly available to
processes on the host. However, the decision to make
use of it is dictated by userland policy instead of kernel
policy, so in its current form it cannot be used to enforce
isolation like the FreeBSD solution. Still, there is no fun-

damental reason policy enforcement cannot be done as
future work for the rump networking technology.

When we evaluate the performance in Chapter 5,
we run the NetBSD 5.99.7 TCP/IP stack both on
NetBSD 4.0 and NetBSD 5.0.

4.4 Potential Application: TorVM

Tor [4] is a TCP anonymizer which encrypts and routes
traffic through a network of nodes. For use, it can either
be configured on an application-to-application basis, or
by using set of a packet filter rules to redirect traffic to
another local machine which handles Tor processing.

TorVM [12] is an application which provides transpar-
ent Tor for all applications on a host. Instead of complex
packet filter rules, TorVM aims to simplify the process:
it dropped in as an application onto the host machine and
the default gateway is configured. TorVM handles all
traffic going through the host by using a virtual machine
to run and operating system for routing traffic.

Using rump networking it is possible to do the same
with an application. No virtual machine or full operating
system installation within the virtual machine is neces-
sary. An implementation has not yet been done, but the
application scenario exists. Using rump networking in-
stead of a virtual machine would provide the potential
benefits of a leaner installation. It also provides better
performance, as is seen in the next chapter.

5 Performance

To evaluate performance, we measure three different se-
tups for the roundtrip time and throughput. The roundtrip
is measured with a simple ping program, which just waits
for a packet and sends a response back. Throughput is
measured using ttcp modified for rump. RTT is always
reported for UDP and throughput for TCP. We measured
both protocols in both cases but did not find a difference
and therefore do not report both protocols for both tests.

The machines used for the test were a 2GHz
Core2Duo laptop running NetBSD 5.0 BETA and a
uniprocessor 1.6GHz Pentium 4 PC server running
NetBSD 4.0 STABLE. The NetBSD 5.99.7 networking
stack was used as the backend of rump networking.

All tests are reported from the perspective of the laptop
host OS: ”out” means a test initiated by the laptop and
”in” means a test initiated by the peer. In tests two and
three we measure each combination of host networking
and rump networking. In the bars group’s legend the first
component always denotes the networking used on the
laptop and the second denotes the server. For example,
”reg-rump” means that the laptop was not using rump
and the server was using rump networking.

(bigger is better)

qemu rump

kB
/s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

out in

Figure 8: Virtualized Throughput

(smaller is better)

qemu rump

R
T

T
 u

s

0

50

100

150

200

250

300

350

400

out in

Figure 9: Virtualized RTT

1. Virtualized: A regular application using the host
networking stack is run against both the application
running in qemu and an application using the full
NetBSD 5.99.7 TCP/IP stack in userspace. These
tests were run on the Core2Duo laptop. The results
are presented in Figures 8 and 9.

2. Sockin: only the sockin component of rump net-
working is used. These tests were performed over
a 54Mbps wireless network. Care was taken to en-
sure that the wireless network remained at 54Mbps
throughout the test. The results are presented in Fig-
ures 10 and 11.

3. Full TCP/IP: this test measures the performance
of using the full NetBSD 5.99.7 TCP/IP network-
ing stack in userspace. The tests were run over
a 100Mbit LAN. The results are presented in Fig-
ures 12 and 13.

reg−reg reg−rump rump−reg rump−rump

kB
/s

0

400

800

1200

1600

2000

2400

out in

Figure 10: Sockin WLAN Throughput

reg−reg reg−rump rump−reg rump−rump

R
T

T
 u

s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

out in

Figure 11: Sockin WLAN RTT

5.1 Analysis

Virtualize: When put against qemu, the rump solution
is around 10 times faster than a full machine virtualiza-
tion solution. This is expected, since the machine emu-
lator has to first be scheduled within the host OS, after
which the emulator must schedule the appropriate pro-
cess. The majority of the performance penalty appears
to come from the emulator scheduling the application,
since as was measured in Chapter 4.2, icmp ping on an
OS running in qemu is relatively much cheaper.
Sockin: This test measured the slowdown due to using
the kernel sockets layer. On a wireless network, the ef-
fect to throughput is not visible. The latency figures are
slightly elevated for sockin, suggesting a slight increase
in overhead. However, as the wireless network is a very
jittery environment, latency should be expected.

An interesting fact to note is that outgoing throughput
is consistently faster in all cases, but outgoing latency is
slower. It is unknown what causes this effect.

reg−reg reg−rump rump−reg rump−rump

kB
/s

0

2000

4000

6000

8000

10000

12000

out in

Figure 12: Userspace TCP/IP 100Mbit Throughput

reg−reg reg−rump rump−reg rump−rump

R
T

T
 u

s

0

50

100

150

200

250

300

out in

Figure 13: Userspace TCP/IP 100Mbit RTT

Full TCP/IP: The throughput on the network is equal
for both cases. However, in the latency measurements
rump networking is clearly slower. The increased RTT
for userspace TCP/IP is much greater if used in the server
than if used on the laptop. Since the server is unipro-
cessor and has only one CPU, we can conclude that the
userspace networking stack causes extra CPU demand.

5.2 Future Directions
Even though currently already performant, there is still
more work than can be done to make the system perform
better. Currently, all memory allocation is relegated to
libc malloc(). As the networking stack does many allo-
cations and releases of known-size mbufs and mbuf clus-
ters, allocating these with malloc instead of from pools
is expensive. Making it possible to use the kernel pool
allocator in rump is a short-term future goal. This will
make virtualized rump networking less CPU-hungry and
bring the latency overhead of full TCP/IP down.

6 Conclusions

This paper presented rump networking: the use of ker-
nel networking code as part of userspace applications
through the means of a virtual userspace kernel using the
Runnable Userspace Meta-Program (rump) framework
available in NetBSD. This makes the kernel networking
stack run in a regular application process. The approach
can be used for debugging, testing, development, virtu-
alization and special applications.

The performance of rump networking for the
NetBSD 5.99.7 TCP/IP stack was compared against
the same networking stack running in a qemu virtual
machine and measured to be roughly 10 times faster.
When measured against the kernel stack on a LAN, the
throughput was the same but latency increased by 25-
50% (around 50µs). Possible performance improve-
ments were discussed in the form of using the kernel pool
allocator for memory allocation instead of libc malloc.

Rump networking is a first class virtualized kernel ser-
vice, i.e. directly a part of an application. This makes
debugging and development easier, since the network-
ing stack can be controlled directly from a host operating
system process with function calls. We examined how to
build a test setup to test IP routing within a single ma-
chine and implemented the setup.

The rump networking is accessed based on an applica-
tion policy: only system calls with the rump sys-prefix
are executed in the rump virtual kernel. This means that
the application must at some level be aware of the rump
networking stack. This typically means a wrapper library
or editing the application source code. Future work in-
cludes making these policy decisions transparent for the
application and enforcing them in the kernel.

Availability

An experimental version of rump networking will be
available in NetBSD 5.0 (as of writing this Release Can-
didate 1 is out). Work on rump continues in the current
development branch. This paper described the status in
the development branch at the time of writing.

The source code is available for examination and
use from the NetBSD source repository. The
core networking library is available from the direc-
tory src/sys/rump/librump/rumpnet and the
individual networking libraries are available from
src/sys/rump/net/lib. The rump web page [7]
contains information on how to use them.

Acknowledgments

The Finnish Cultural Foundation provided funding.

References

[1] BELLARD, F. QEMU, a Fast and Portable Dynamic
Translator. In USENIX Annual Technical Confer-
ence, FREENIX Track (2005), pp. 41–46.

[2] COSTELLO, A. M., AND VARGHESE, G. Re-
designing the BSD Callout and Timer Facilities.
Tech. Rep. WUCS-95-23, Washington University,
1995.

[3] DIKE, J. A user-mode port of the Linux kernel. In
ALS’00: Proc. of the 4th Annual Linux Showcase
& Conference (2000).

[4] DINGLEDINE, R., MATHEWSON, N., AND
SYVERSON, P. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX Security
Symposium (2004), pp. 303–320.

[5] ECONOMOPOULOS, A. A Peek at the DragonFly
Virtual Kernel, 2007.

[6] ELY, D., SAVAGE, S., AND WETHERALL, D.
Alpine: A User-Level infrastructure for network
protocol development. In Proc. of USENIX Symp.
on Internet Technologies and Systems (2001),
pp. 171–184.

[7] KANTEE, A. Runnable Userspace Meta Programs.
http://www.NetBSD.org/docs/rump/.

[8] KANTEE, A., AND HELANDER, J. Implementing
Lightweight Routing for BSD TCP/IP. In Proc. of
5th EuroBSDCon (2006).

[9] MCKUSICK, M. K., BOSTIC, K., KARELS, M. J.,
AND QUARTERMAN, J. S. The design and imple-
mentation of the 4.4BSD operating system. Addi-
son Wesley, 1996.

[10] NETBSD LIBRARY FUNCTIONS MANUAL. pro-
plib – property container object library, 2007.

[11] NETBSD PROJECT. http://www.NetBSD.org/.

[12] PECK, M., AND WILLIAMS, K. A Tor Virtual Ma-
chine Design and Implementation, 2008.

[13] WRIGHT, G. R., AND STEVENS, W. R. TCP/IP
Illustrated, Volume 2. Addison Wesley, 1995.

[14] ZEC, M. Implementing a Clonable Network Stack
in the FreeBSD Kernel. In USENIX Annual Techni-
cal Conference, FREENIX Track (2003), pp. 137–
150.

