
Mail system for distributed network

Andrey Zakharchenko

avz@jscc.ru
Joint SuperComputer Center, Russian Academy of Sciences

ABSTRACT

Sometimes it is necessary to organize a mail domain for large and geographically distributed network, which may
consist of independent subnets with their own separate Internet connections (and some of those connections may
be not very good, or not very fast, or not very cheap). But users of the network need mail system, and it should be
fast, convenient, and reliable.

In this paper some ways of distributed mail domain implementation are discussed, and a new one is introduced.
The new method allows us to implement distributed mail system – fast and convenient for end users, convenient
for administrators, using network traffic sparingly, and reliable enough (at least without single point of failure).

1. Introduction

E-mail is one of the most important communication
ways in the Internet. Sometimes an organization work
depends on mail system functionality, and somewhere
mail transfers may form a large part of total network
traffic. A special case we have when organization use
one mail domain in a large and geographically
distributed network (e.g. central office and regional
departments), because it becomes impossible to keep
even internal mail messages inside one local network.

The goal of the work was to design a fast, convenient
and reliable distributed mail system. The following
criteria were formulated to choose a mail system
architecture:

• High speed and low latency for end users.
Operations of submitting or reading messages
should be as fast as possible, even in subnetwork
which is connected to the Internet (or to another
subnetwork) with slow and narrow channel.

• No single point of failure. If any mail server or
network channel goes down (maybe bringing one
of subnetworks offline), the rest of the network
should be able to send and receive internal and
external messages.

• Single point of administration. Any operations with
user database, including user movement from one
subnetwork to another, should be performed from
one central administrative point.

• Economy of traffic, especially on slow channels.
Undeliverable letter, virus, or spam should be
refused by the first server seeing it without
additional network communications. And any letter
should travel any particular network channel at
most once.

2. Some classic architectures of mail
systems

 2.1 Single centralized domain

This is the simplest way of implementing mail system.
We can use one domain, one mail server, and all users
have to connect to this server to submit or read their
messages. This configuration is very convenient for
administrator and good for local users. But if we have
several subnetworks, the situation is not so brilliant.
Any internal letter within subnet B will travel to
mailbox on the central server in subnet A, and then
from mailbox back to subnet B to user's client
machine. If the channel A-B is not very fast, the users
can get some delays and timeouts. If the letter is
addressed to local mailing list, it'll go back and forth
many times flooding the internetwork channels. And,
last but not least, this architecture contains an evident
single point of failure. Bring the only server (or its
network connection) down, and the whole network
will have no mail at all.

 2.2 Set of parallel sub domains

This is the simplest way of implementing mail system
without single point of failure. We can install mail
servers in every subnetwork and give them unique
domain names. This configuration gives very fast and
convenient mail connection for all end users (they
never use slow long-distance channels directly), and
inter-subnet deliveries from one user to another are
optimized. But we get some problems when we use
local mailing lists. Every list can be maintained on
one server only, and letters sent to the list can travel
back and forth several times. If the server maintaining
any list is offline, this list doesn't work for online
users. If a user moves from one subnet to another,
his/her address changes (retaining it requires

mailto:avz@jscc.ru

maintaining aliases on old servers, which lead to non-
optimal letters delivery). And administrator should
maintain a set of user databases, one for every subnet.

 2.3 Tree structure

Some of deficiencies of the previous architecture can
be avoided implementing a tree structure of main
domain and subdomains. Every user gets local address
in his/her subnet and an alias in the main domain (on
the central server), which is an official address. But
this way leads to some deficiencies of centralized
domain – single point of failure, duplicated transfers
etc. And administrator's work is nearly doubled,
because every user has to be inserted into both local
and central database.

3. Existing distributed mail domain
solutions

Some interesting solutions were found in the Internet.
We can discuss two different approaches.

 3.1 Postfix per-user transport tables [1]

We can maintain a list of all users on every mail
server and keep an optimal path of delivery for each
of them. It gives us a mail system without single point
of failure, without duplicated mail transfers, fast and
convenient for end users, but its administration can be
a nightmare! If we try to simplify the administrator's
life and introduce default central server (to receive
mail for all unknown users of our domain), the
architecture becomes ordinary tree structure with all
its pros and contras.

 3.2 IceWarp Merak Email Server: Distributed
Domain [2]

This commercial product allows us to install several
mail servers for one domain and distribute the domain
users between the servers. If any server receives letter
for its local user, it accepts it; if the letter is addressed
to another server's user, it tries to find the destination
server using VRFY command of SMTP. This
architecture doesn't contain single point of failure, but
it doesn't contain single point of administration either.
VRFY requests can use a lot of network traffic on
busy systems even if the results are cached, and
delivery to local mailing lists cannot be optimized
because VRFY command doesn't return mailing list
expansion.

4. Developed architecture

No one of classic (or found) solutions meet all our
criteria, that's why a new architecture for distributed
mail domain was developed.

First of all, the only way to optimize internetwork
traffic (and maintain low latency for end users) is to
install a mail server in every subnetwork. Every local

server should know all users of the domain, that's why
user information is to be stored in the replicated
database. Each user has a mailbox in one of the
subnetworks, so the user's record in the database
contains "subdomain" property, so any user has two
addresses: official <username@domain> and local
<username@sub.domain>. Mailing lists and aliases
are not wired to any special subdomain and belong to
the main domain. They are stored in the replicated
database too.

Special addresses <all@domain> and
<all@sub.domain> are expanded into list of all users
of the mail domain or all users of particular subnet.

The mail servers in our system can be divided into
three groups ("levels") depending on their
configuration, DNS records and user database records.

• Level 0. The server is high-priority MX for our
domain, and it doesn't have any local users. Its task
is to receive incoming external mail for the whole
domain and filter spam, malware, undeliverable
letters etc. You can install such a server if you have
fast unlimited Internet connection. This level is not
mandatory.

• Level 1. The server is low-priority MX for our
domain, and it has local users. Usually it will
receive letters for its local users only, but if all
"level 0" servers go offline, it'll perform their work.
If you have several "level 1" servers, their MX
priority can be ordered by number of active local
users. This is the most common type of server, but
you can develop working system without this level
using levels 0 and 2 only.

• Level 2. The server is not listed in DNS as MX for
our domain and receive letters for local user only.
This level is for subnets with slow, irreliable, or
expensive Internet connection, or for subnets
without real IP (behind NAT). In the latter case our
"level 0-1" servers should be able to connect to this
one some way, e.g. via VPN or port tunnelling.
Sometimes "level 2" servers doesn't send their
outgoing mail directly to destination and use "level
0-1" servers as mail relays.

5. Some details of implementation
and results

In the current implementation mail servers work under
FreeBSD 7 and use Exim as MTA[3]. Information
about users is stored in PostgreSQL database[4]
replicated by Slony 1[5]. A simple web-interface was
developed for those mail administrators who don't like
PSQL command line interface. The same architecture,
of course, can be installed with other OS, MTA, or
database.

It may be interesting to implement replicated user
database with subdomains as LDAP tree. Author used
PSQL because he already had working Exim

mailto:all@sub.domain
mailto:all@domain

configuration using greylisting system implemented
as PSQL stored procedure (greylisting tables are not
replicated). Moreover, old mail system in the
experimental network already had an SQL base of
users, and it was more easy to move them to another
SQL base then to LDAP directory.

Slony 1 DB replication system was designed to work
with LAN-connected database clusters. Our inter-
server channels may be very slow when compared to
LAN, that's why I've patched Slony to allow them to
wait 10 minutes between base synchronizations. Such
a configuration leads to about 2Mb of inter-subnet
traffic per day for database replication. This overhead
may be avoided or substantially reduced using manual
DB replication or more intelligent user's and
administrator's interface, but the former way is
inconvenient, and the latter one is not even planned
yet.

The mail system was successfully tested in a
relatively small network (three servers with three
different levels, three geographically separated
subdomains, two separated networks, more then a
hundred active users, and up to 30 aliases and local
mailing lists). It replaced old centralized mail system
(nearly collapsed at the time of replacement). The
“letter latency” for end users was lowered from 15—
20 seconds (subnet 1) and 30—120 seconds (subnet 2)
to 1—2 seconds. Intra-subnet mail never leaves its
network of origin, and delivery to local mailing lists is
optimized to avoid flooding external channels.

Here is a small table showing work of the servers
during 8 days of testing:

level letters

received accepted delivered sent

0 281904 2267 0 2317

1 97019 2802 2947 546

2 868 838 803 114
"Received" is total number of incoming connections,
"accepted" is number of letters accepted for delivery
(without spam, viruses, etc), "delivered" is number of
letters delivered to local mailboxes, and "sent" is
number of letters sent to other servers via SMTP.

"Delivered+sent" is greater then "accepted", because
one accepted letter can be delivered to several
mailboxes. "Level 2" server accepted nearly all
received letters, because it is not listed in DNS as MX
for our domain, and the only type of rejected letters
are those with mistyped addresses from local users.

6. Conclusions and future work

The new architecture of distributed mail system seems
to be fast, economical, convenient for end users and
administrators, and reliable enough (turning off
"level 0" server for maintenance wasn't even noticed
by end users). The plans of future work contain
improving web-interface (and its translation into
English if it is desired, at the moment of writing it
exists in Russian only) and further reliability
improvement by trying to replace "level 1" server with
two-machine cluster.

Acknowledgments

I thank Kirill Reutov, who stated the problem, and
REA "Prostor", Moscow, Russia, for providing
experimental network.

Availability

This work is not resulted in any program product, but
the following texts are available from the author:

• Schema of PostgreSQL database storing all
information for the distributed mail system,
except the messages themselves.

• Two-line patch for Slony1 allowing us using
the system with slow Internet connections.

• Examples of configuration files for Exim 4
MTA for using with our database.

• Recommended DNS records for domain
using the system.

• Simple web interface for mail system
administrators. (In Russian. Is anyone
interested in English translation?)

• Simple web interface for end users. (In
Russian. What about i18n and l10n?)

References

[1] http://www.irbs.net/internet/postfix/0401/1012.ht
ml

[2] http://www.icewarp.com/about_us/technology_ne
ws/full_texts/distributeddomain_webversion.php

[3] http://www.exim.org/

[4] http://www.postgresql.org/

[5] http://www.slony.info/

http://www.postgresql.org/
http://www.exim.org/
http://www.icewarp.com/about_us/technology_news/full_texts/distributeddomain_webversion.php
http://www.icewarp.com/about_us/technology_news/full_texts/distributeddomain_webversion.php

	Mail system for distributed network
	Andrey Zakharchenko
	avz@jscc.ru
Joint SuperComputer Center, Russian Academy of Sciences
	ABSTRACT
	1.Introduction
	2.Some classic architectures of mail systems
	 2.1 Single centralized domain
	 2.2 Set of parallel sub domains
	 2.3 Tree structure

	3.Existing distributed mail domain solutions
	 3.1 Postfix per-user transport tables [1]
	 3.2 IceWarp Merak Email Server: Distributed Domain [2]

	4.Developed architecture
	5.Some details of implementation and results
	6.Conclusions and future work
	Acknowledgments
	Availability
	References

