
The locking infrastructure in the FreeBSD kernel

Attilio Rao
attilio@FreeBSD.org
The FreeBSD project

Abstract

The increased parallelism introduced by vendors in their architectures for the last years, in order to satisfy the
growing request by the user of CPU power, has prodded substantial differences in the software itself. In this paper
the support for the multithreading infrastructure that the FreeBSD kernel has adopted, gradually, in the years will
be discussed from the developers perspective in order to show strong and weak points of the approach. Along with
a technical discussion about the current support, some ideas about how to improve it will be described together with
detailed outlines about how to deal with locking problems.

1. Introduction

During the FreeBSD 5.0 development timeframe sever-
al efforts have been performed in order to move the
kernel from a single-threaded workflow approach to a
multithreaded one. As long as this major task (com-
monly named as The SMPng project) has brought a
lot of performance-wise benefits it also required to
touch heavilly a lot of important core subsystems with-
in the kernel (hacking the scheduler, adding new
threads containers, implementing synchronization
primitives, moving the consumers to successfully use
those, etc.) and offered several challenges for develop-
ers to deal with. In order to fully understand them,
would be useful to look at how new concepts have
been developed, how they influenced the kernel sub-
system and what kind of problematics they imposed. A
little, technical overview of the situation pre-SMPng
seems important in this direction.

Already in the 4-RELEASE serie the kernel was sup-
porting multithreading and preemption as full devel-
oped concept, but this scheme was imposing some
problems. In particular, if a running thread was getting
preempted by another one and then switched back to
activity it could have found corrupted or missing re-
sources (structures, lists, etc.). In order to avoid corrup-
tions in a similar context the system had some restric-
tions like avoiding preemption for threads running in
kernel space and disabling interrupts as lock for longer
regions of code. Both these protections, however, were
totally unuseful in the case of multiple CPUs, where
anyone was running its own thread. In such scheme, in-
fact, multiple threads can still access to resources at the
same time influencing (and corrupting) the shared ob-

jects. In order to solve such problem, only one thread
per-time was allowed to run in the kernel as if it was an
uniprocessor machine. This had the big unadvantage to
loose all the parallelism desired in the kernel space
making the presence of multiple CPU, effectively, use-
less. In this optic the project SMPng was created.

1.1. The SMPng effort

The SMPng project had the aim to make a fully multi-
threading, preemptive and non-reentrant kernel. It was
released for the first time with the FreeBSD-5.0 RE-
LEASE in the 2003 in order to keep up until the FreeB-
SD-7.0 RELEASE in the 2007.

The initial effort was to offer a serie of suitable locking
primitives that could be used in order to lock subsys-
tem and then to switch the BKL (Big Kernel Lock),
which was preventing more threads from accessing at
the same time in the kernel, into a blocking mutex
called Giant. A new kernel memory allocator was im-
plemented and Giant was removed from the scheduler
activities and replaced by a more suitable spin mutex
called sched_lock. As last step the new concept of
ithreads has been implemented.

Through ithreads, any drivers (or interested parties) can
install an interrupt handler and assign its own context
when running. This was offering the possibility to use
sleepable locks to all the interrupt handlers, along with
the possibility to perform a lot of interesting opera-
tions.

With time, more kernel subsystem was brought out the
influence of the Giant lock and their own locking was
assigned gradually to them (this included the network
parts, the VFS, the VM, etc.).

1.2. The current situation: post-SMPng

Nowadays, all the relevant subsystem of the kernel are
nomore under the influence of the Giant lock. The
sched_lock is no more present (it has been decomposed
in a serie of spinlocks called containers lock) and the
ithread mechanism has been completed in order to sup-
port a wider and more peforming mechanism called in-
terrupt filtering.

The SMPng project can be considered closed with the
RELEASE 7.0 which showed substantial improve-
ments to the kernel scalability.

The main concept behind the FreeBSD locking support
is that consumers should know it well and use, where
more appropriate, the right primitive in order to solve
the locking problem as well as possible. This requires
both a good grasp on the problems to solve and on the
support provided by the kernel.

2. The locking primitives

There are several locking primitives developed during
the SMPng timeframe which can be grouped, basically,
into: mutexes, r/w locks, rm locks, waitchannels and
semaphores.

The mutexes are primitive offering mutual exclusion
for the codepath they want to protect. For example, if a
thread owns a mutex and another one contests on it, the
latter is unable to go on in the codepath until the former
one doesn't release it. This ensures atomicity among
several operations of different nature (eg. accesses to
different members of the same structure).

The r/w locks (or read/write locks), traditionally are
primitives offering 2 different level of acquisition:
reader mode and writer mode. If a thread owns the lock
in read mode other threads willing to acquire it in read
mode will be allowed to run the protected codepath
while other (willing to acquire it in write mode) won't.
Differently, acquiring the lock in write mode let it be-
have like if it is a mutex in regard of both kinds of con-
tenders. r/w locks are very useful for protecting re-
sources which are accessed often in distinct, mixed
ways (reading and writing).

The rm locks (or read mostly locks) are very similar to
r/w but they are developed in order to offer a very
small overhead for the read acquisition and a thougher
one for the writing acquisition. rm locks are very useful
for protecting resources accessed very frequently for
reading and very few time for modify.

The waitchannels allow a thread to sleep for a certain
amount of time when it wakes up after another thread
calling or a timeout expiring. Usually, they are syn-
chronized with a controlling condition through an inter-
lock, which is passed to the primitive serving the wait-
channel and released just before to sleep (as well as it
is going to be reacquired just after the wake up). They
are very useful to synchronize accesses to a resource
which is busy for an indefinite timeframe.

Counting semaphores are very similar to waitchannels
but for them the controlling condition is always the
same: at the very beginning a counter is set to a value
bigger than 0 and when a thread acquires the
semaphore it does decrease the counter. Once the
counter reaches 0 the other threads willing to acquire
the semaphore will sleep waiting for a token to be freed
by past owners. Please not that a semaphore with a start
value of 1 is just a mutex. Semaphores are considered a
legacy primitives and they are rarely used nowadays.

A general concept is that all the locks in the FreeBSD
kernel can support the lock recursion. Lock recursion
means that an owner, already holding a lock, can ac-
quire it several time without incurring in problems.
This feature is, however, dangerous and discouraged as
it is often a symptom of a wrong strategy. So, for all
the relevant locking primitives, recursion needs to be
selectively enabled (manpages referenced in this chap-
ter can help in the specific case).

However, in order to fully understand strong and weak
points for any primitive in FreeBSD it is convenient to
identify 3 different categories of primitives based on
the behaviour of contesting threads: spinning, blocking
and sleeping.

2.1. Spinning category

In this category the only one primitive available is the
mutex (mutex(9)).

A spin mutex basically supports mutual exclusion for a
code region as if a thread owns it and another contests
on it, the latter is going to spin until the former one
won't release the mutex. In order words, the contesting

thread will remain on the runqueue of the scheduler
and will yield code execution until the lock got re-
leased. This behaviour has some interesting side ef-
fects.

First of anything, a context switch cannot be performed
for a thread owning a spinlock otherwise some dead-
locks can happen. Immagine, infact, the situation
where a spinlock owner gets preempted in favor of an-
other thread with higher priority. If the latter thread
wants to acquire the contested spinlock it will start
spinning, but it will remain on the runqueue so the
scheduler will keep choosing it for running causing a
deadlock. Then, another possible deadlock situation
cames from the kernel context used by interrupts. The
top-half of interrupts handler, infacts, runs into a bor-
rowed context, ruled by a particular thread. If this
thread owns a spinlock and the interrupt top-half wants
to acquire it another deadlock can happen. In order to
solve both such situations in the FreeBSD kernel spin-
locks need to disable interrupts at all when acquired
(and to re-enable again when they are released). This
makes their implementation a lot heavier in terms of
overhead and consequences (increased interrupt laten-
cy) so that often using a spinlock is never a good idea.

There are, though, cases where spinlocks are the only
one possible choice. This is the case, for example, of
the above mentioned top-half of interrupt handlers run-
ning in kernel context. As long as the context has been
borrowed they cannot context switch in order to avoid
deadlocks so they are forced to use spinlocks.

2.2. Blocking category

For this category there are 3 different primitives avail-
able: mutexes (mutex(9)), r/w lock (rwlock(9)), and rm
lock (rmlock(9)).

A blocking primitive basically allows contesting
threads to be saved into a specific cointainer, to per-
form some managing stuffs, to be removed from the
runqueue and to be switched out from the CPU they are
running on. This means that a thread which contests on
a blocking lock won't be visible to the scheduler again
until the reverse operations will happen: removal from
the container, performing managing handover, reinsert
in the scheduler runqueues, eventual preemption. The
container for blocking primitives is called turnstile.

One of the most important managing operations a turn-
stile performs on its threads is called priority propaga-
tion. Priority propagation is a mechanism which try to

avoid an high priority thread, blocking on a turnstile to
be starved by a lower priority one. For example, if the
owner of lock L has a priority A and another thread,
with the B priority (with B > A), sleeps on L the former
thread will inherit priority B in order to increase its
chance to run soon and make the latter thread available
as soon as possible. Obviously, the turnstile handover
will switch back the owner priority to A. Note that if
the owner is sleeping on another turnstile, the priority
will be propagated to the owner of the latter turnstile.
This means that threads and turnstile makes chains
where the turnstiles are links and threads have the du-
plex role to be alternatively owner and contender
(where the head has the highest available priority). This
makes clear why the turnstile preserve the concept of
owner and they are meaningfull without it: the owner is
just the head for a turnstile link. In order to support r/w
locks, turnstiles are organized in order to deal with sev-
eral subqueues (2 at the moment) so that just one turn-
stile can cater a lock fully. Ideally, however, there is no
limit to the number of subqueues a turnstile could han-
dle. For readers, however, no priority inheritance is im-
plemented for turnstiles mainly because it is impossible
to track efficiently all the possible owners. A possible
workaround for that can be to implement the concept of
owner of record for the turnstile, where just one reader
is tracked. However, it is, obviously, just a temporary
workaround in the timespan of the contested reading
path.

In any case, performing priority inheritance, tracking
and finally performing a context switch (for any single
contender) is an high overhead operation, in particular
considering that often the time passed between the
blocking and the subsequent wake up is not very much.
Considering that, an optimization has been implement-
ed in blocking primitives called adaptive spinning.
Adaptive spinning allows contesting thread to spin on
the lock if the owner is actually running on another
CPU and so there are good chances the lock is going to
be released soon. If the lock owner is not running or
suddenly got sleeping the normal behaviour for the
contesters happens. Please note that the adaptive spin-
ning mechanism is implemented in the primitives
themselves and not in the turnstiles. Finally, it worths
tell adaptive spinning works for r/w lock held in read
mode too but with the limitation of a timeout as long as
readers are not tracked.

Blocking primitives are thought to be the first choice in
terms of locking strategies for protecting resources in
FreeBSD as long as they are equipped with a full set of
optimizations in order to cope with various problems
and they don't disable interrupts (or even preemption)

in any case. It is obvious that as long as blocking prim-
itives perform a context switch as the very last opera-
tion, a thread cannot acquire them while already hold-
ing a spinlock.

2.3. Sleeping category

For this category there are 5 primitives available: s/x
lock (sx(9)), lockmgr(lockmgr(9)), condition variables
(condvar(9)), sleeping points (sleep(9)) and
semaphores (sema(9)).

A sleepable primitive basically allows contesting
threads to be saved into a specific cointainer, to be re-
moved from the runqueue and to be switched out from
the CPU they are running on. The catering container is
called sleepqueue (sleepqueue(9)).

To a first sight the sleepqueue could seem very similar
to a turnstile, but there are a bounch of differences.
First of anything, sleepqueues were developed in order
to implement only waitchannels (condvar and sleeping
points) and this reflects its own structure: sleepqueues
do not perform any priority propagation and do not
track owners at all (as long as waitchannel are sup-
posed to not have any owner). Then, in order to support
efficiently waitchannels, sleepqueues offer the possibil-
ity to specify a timeout for the sleeping and a new pri-
ority for the threads once it does wake up. They also
offer the possibility to catch signals delivered to the
sleeping threads and to act appropriately once they
wake up. Finally, it offers a full set of mechanisms in
order to check sanity of interlocks once they are passed
to the primitives. It is obvious that sleepqueues and
turnstiles have been developed with specific needs of
consumers in mind and they are used to cater totally
different actions. More specifically, sleepqueues can be
seen as unbound sleepers (for long sleeps) while the
turnstiles can be seen as bound sleepers (for short
sleeps). In order to enforce correct locking strategies
within the kernel an assertive has been made that no
blocking lock (and so no spinlock) can be held while
sleeping on a sleepqueue. This happens in order to
avoid threads to sleep while holding a mutex and inval-
idate all the prior work done (priority propagation,
adaptive spinning, etc.). This rule can impose some in-
teresting problems that will be explored later.

The sleeping category has the problem to suffer of
some legacy features born in the pre-SMPng era (but
not only). For example, intially the sleep points were
the only way to implement waitchannels even if their
interface is messy and not very intuitive. Condition

variables were introduced just some years later so that
shipping away sleeping points would have result into a
not sustainable KPI breakage for thirdy part producers.
What should happen, in the future, is to bring the only
one feature still missing for condition variables (priori-
ty raising) and completely drop the sleeping point, try-
ing to deal with this heavy breakage. New code should,
in any case, prefers condition variables for handling
waitchannels.

The lockmgr, also, is a legacy product which came di-
rectly from the 4.x era. It implements a r/w lock but it
also provides a very poor interface which is more simi-
lar to a sleeping point than a locking primitive. During
the very early times of 5.x era is become very popular
and widespread (in particular in the VFS and in the
buffer cache) for some of its feature (just like the inter-
lock passing, the possibility to drain consumers, the
possibility to specify priority and timeouts to the primi-
tives, etc.) but it is actually deprecated in favor of such
primitives like sx lock and condvar. sx locks were cre-
ated in order to cope, initially, with the impossibility to
hold a lock while sleeping. Sometimes it is just too dif-
ficult (or simply impossible) to deal with all the sleep-
ing points in a codepath so it is much more convenient
to use an sx lock for such codepaths. In any case, as a
sleeping primitive, their usage is always deprecated in
favor of a better locking strategy involving rwlocks or
mutexes.

Finally the other legacy primitives are semaphores.
While it is correct to implement them through the use
of a sleepqueue, they should be dropped in favor of
mutexes and waitchannels in any case. In FreeBSD,
just some legacy code use them or paradigms where the
value of 0 is passed in order to synchronize startup of
some piece of code within a subsystem (aio is an exam-
ple of that).

2.4. Tips

As the chapter shows, the categories help in identifying
a simple hierarchy between locks in the FreeBSD ker-
nel. This helps on various aspects like, for example, the
fact that LORs (Lock Order Reversals) and subsequent
deadlock can only happen between locks of the same
category and it does simplify heuristics and diagnostic
tools (for example, spin mutexes have, embdedded, a
simple logic in order to catch for deadlocked owner).
One of the biggest objection which is often made for
the locking primitives in the FreeBSD kernel is that
they are too much, sometimes complicated and over-
lapping. If not considering the legacy supports (sleep-

ing points and lockmgr) and if some simple rules can
be followed, building a winning locking strategy is not
too difficult.

In particular a consumer should:

• Use a blocking primitive (mutex or rwlock) in the
common case

• Use a spinlock if and only if a blocking primitive
cannot be used or the path to be protected is ex-
tremely little

• Try to deal with unbound sleep, when holding a
lock, handling races after the drop instead than im-
mediately switch the locking strategy in order to
use an sx lock

• Use an sx lock only when it is necessary to main-
tain resources consistency across several (and fre-
quent) sleeps

• Avoid completely the legacy support (lockmgr,
sleeping point and semaphore)

• Avoid in any case lock recursion

3. Atomic operations

Sometimes it is desired the ability to perform, atomi-
cally, very simple operations like, for example, an in-
crement or a bit setting. Simple operations, inside the
FreeBSD kernel, can be performed by using directly
atomic operations. Such operations are guaranted to be
atomic even in the presence of interrupts which means
that, when necessary, they disable them (note: that's not
the case for a lot of new architectures which directly
provide the ability to perform atomic instructions with-
in the ISA, however). Atomic operations are used,
mainly, as the ground for building more complex lock-
ing primitives (mutex, rwlock, etc) but they can be
used also directly by the consumers in an effective
way, sometimes helping in building a very low-over-
head locking infrastructure. The only side effect is that
atomic operations are always limited to operate on the
architecture bound so that it is impossible to use them
in order to work on large resources safely. Example of
atomic operations usage can be located, for example, in
the locking primitives code (sys/kern/kern_mutex.c) or
in the file descriptor handling code (sys/kern/kern_de-
scrip.c) in order to see how they are used directly in or-
der to make safe code without locking.

Please note that there is no guarantee that the atomic
instructions are visible across multiple CPUs. More
specifically, there is no guarantee that the atomic oper-
ation updates the caches and relevant buffers for all the
CPUs involved (or invalidates the cache line where the
operation took place) in the SMP system.

Treacting the x86 architecture as a starting point,
FreeBSD guarantees that at least operations on 32 bits
(and smaller) memory operands can be atomic (like 8
and 16 bits). It is not guaranteed, instead, that all the
platform supports the 64 bits sized operations. That is
because sometimes it is too difficult to make
lightweight atomic operations on 64 bits operands for
32-bits architecture (eg. x86) so, in order to avoid too
overheaded operations and forcing consumers in devel-
oping a wrong semantic the support is simply dropped.

Sometimes, however, ensuring that an operation will be
atomic is not enough in order to have a safe logic. One
would need to have guarantees also on the ordering of
performed operations. That is when memory barriers
came in help.

3.1. Memory barriers

The FreeBSD kernel offers the possibility to perform
atomic operations in conjuction with memory barrier.
This barrier basically decides the ordering of the atom-
ic operation in regard of other memory accesses in
terms of timing. For example, if a CPU performs an
atomic operation with a read memory barrier it
means that all the operations subsequent to this one are
going to be visible to the current CPU just after the
atomic is completed. On the other side, if a CPU per-
forms an atomic operation with a write memory bar-
rier it means that all the operations prior to this one are
visible to the current CPU before the atomic takes
place. Memory barriers have proven to be very useful
in locks building (eg. the lock acquisition will have a
read memory barrier while the lock releasing will have
a read memory barrier) and in situations where timing
is important (context switches). Sometimes atomic op-
erations are also guaranted to not be reordered by the
architecture but usually that is not an assumption which
can be made within the kernel. Memory barriers, also,
specify for the compiler to not reorder or optimize such
instructions, resulting in a strong link for code execu-
tion.

3.2. Refcounts

Refcounts are a simple and effective way to handle on-
the-fly structures which can be freed in any moment.
Basically, when a structure is created and consumers
work on it asynchronously, they can acquire a refer-
ence (which means simply bumping an integer value)
for such object so that, a subsequent destroy of it will
be stopped in case that the counter is not 0. Often,
when dealing with a refcount, you will need to also
deal with flags and other members so that a mutex is
needed in order to protect those. However, there are
simple cases where just a simple add / sub / compare
cycle is required to handle the refcount. In these cases
the refcount primitive can be used (currently, no man-
page is provided for it, unluckilly, but the relevant KPI
can be located into sys/sys/refcount.h).

The refcount interface is implemented simply with
atomic operations and all the operations are inline so
that one can get the fastest primitive available for han-
dling a refcount. That makes it the preferred option
when dealing with simple refcounts.

4. Miscellaneous

In conjuction with the above mentioned primitives and
mechanisms for building successful locking strategies
there are other minor mechanisms that worths to know
about in order to deal with multithreading in the FreeB-
SD kernel.

The first concept to be introduced is the scheduler
barrier. A scheduler barrier is a mechanism which im-
poses some constraint on the scheduling of involved
threads in a way or another. The schedulers offer main-
ly 2 scheduling barriers: one controlling threads migra-
tion and another one controlling threads execution. A
thread which runs a codepath into a section closed be-
tween the pair of sched_pin() / sched_unpin() can as-
sume that, while that code executes it will not migrate
to run on another CPU. This assumption is very impor-
tant, for example, when a thread is accessing to per-cpu
datas and it wants to maintain a consistency of opera-
tions. The second barrier, instead, is rappresented by
the sched_bind() function. It does ensure that the pro-
vided thread runs only on the specified CPU id. This
barrier is particulary useful for kernel threads, created
for special purposes, which need to match 1:1 the
CPUs present in the system. Sometimes, this mecha-
nism is used, erroneously, in order to force the execu-
tion of a thread (created and scheduled very early in the
kernel lifespan) on the CPU0 before the other CPUs are
started. That is a clear interface abouse which needs to
be avoided as much as possible and replaced with ef-

fective code. Note that both sched_pin() and
sched_bind() are scheduler specific and any new sched-
uler needs to implement its own in order to maintain
the support.

Sometimes, it is desired to disable preemption for some
codepaths in order to avoid datas corruptions. In order
to do that the pair of function critical_enter() / criti-
cal_exit() is offered by the kernel. If a codepath is sur-
rounded by such functions it is ensured that the threads
preemption will be disabled while it is executed. As
long as this feature impacts the whole system (infact,
differently by the scheduler barriers, it doesn't just in-
volve the invoking threads, but even the others) it
should be used very carefully if not avoided at all. Dis-
abling preemption, by a consumer, can be useful, for
example, if the consumer needs to deal with per-cpu
datas but it can not tollerate modify to such datas by
eventual threads, while performing.

If disabling preemption often is a strong condition, oth-
er times threads could have the necessity to disable in-
terrupts at all. The FreeBSD does not support a way to
do that in a machine independent way, though an un-
offical one can be found. Several places in the kernel
are getting used to disable interrupts through the spin-
lock_enter() interface (and to re-enable them through
spinlock_exit()). As long as this is an operation which
can be potentially very dangerous for performance (if
not well used interrupt latency can be increased dram-
matically) the use of such interfaces is highly discour-
aged and should be avoided as much as possible.

Sometimes there is the necessity to let run a function
(often for managing) on a set of specified CPUs (or all
of them). smp_rendezvous() and
smp_rendezvous_cpu() can perform such task by
stopping the current activity of the CPU, passing it a
setup function, a rendezvous function and a teardown
function and waiting for them to be executed. That
mechanism is often used in order to perform on-the-fly
setups on all the CPU alredy up and running, but it can
also be used in order to implement facilities like rm-
locks (sys/kern/kern_rmlock.c for a reference).

5. Conclusions

In this paper the full set of synchronization primitives
has been presented into an approach which should help
the reader to understand what is behind the scene and
help him in making the right choice in terms of locking

approach choosen. In any case there is still a lot of on-
going work for the SMP infrastructure.

For example, legacy locking primitives should be com-
pletely removed by all the subsystem and cutted off
from the kernel; primitives already existing can be fur-
ther refined both in terms of performance and usability
(just think about back-off algorithms for spinlocks and
adaptive spinning parts, new wake up algorithms ex-
plored, etc); Giant which still needs to be removed by
some subsystems (and ideally to be removed by the
whole kernel); locking strategy in the consumers which
can be refined and improved.

6. Bibliography

1. Marshall Kirk McKusik and George V. Neville-
Neil, The design and implementation of the
FreeBSD operating system, Addison-Wesley

2. Uresh Vahalia, Unix internals: the new frontiers,
Prentice-Hall, Inc.

3. Jim Mauro and Richard McDougall, Solaris inter-
nals, Sun Microsystems Press

4. Curt Schimmel, Unix Systems for Modern Archi-
tectures: Symmetric Multiprocessing and
Caching for Kernel Programmers, Addison Wes-
ley

5. The FreeBSD project: http://www.FreeBSD.org

