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Abstract

The increased parallelism introduced by vendors in their architectures for the last years,  in order to satisfy the
growing request by the user of CPU power, has prodded substantial differences in the software itself. In this paper
the support for the multithreading infrastructure that the FreeBSD kernel has adopted, gradually, in the years will
be discussed from the developers perspective in order to show strong and weak points of the approach. Along with
a technical discussion about the current support, some ideas about how to improve it will be described together with
detailed outlines about how to deal with locking problems.

1. Introduction

During the FreeBSD 5.0 development timeframe sever-
al efforts have been performed in order to  move the
kernel from a single-threaded workflow approach to a
multithreaded  one.  As long  as  this  major  task (com-
monly named as  The SMPng project) has brought a
lot  of  performance-wise  benefits  it  also  required  to
touch heavilly a lot of important core subsystems with-
in  the  kernel  (hacking  the  scheduler,  adding  new
threads  containers,  implementing  synchronization
primitives,  moving the consumers to successfully use
those, etc.) and offered several challenges for develop-
ers  to  deal  with.  In  order  to  fully  understand  them,
would  be  useful  to  look  at  how  new  concepts  have
been developed,  how they influenced the kernel  sub-
system and what kind of problematics they imposed. A
little,  technical  overview of  the  situation  pre-SMPng
seems important in this direction.

Already in the 4-RELEASE serie the kernel was sup-
porting  multithreading  and  preemption  as  full  devel-
oped  concept,  but  this  scheme  was  imposing  some
problems. In particular, if a running thread was getting
preempted by another  one and then switched back to
activity  it  could have found corrupted or  missing  re-
sources (structures, lists, etc.). In order to avoid corrup-
tions in a similar context the system had some restric-
tions  like avoiding preemption for threads running in
kernel space and disabling interrupts as lock for longer
regions of code. Both these protections, however, were
totally  unuseful  in the case of  multiple CPUs,  where
anyone was running its own thread. In such scheme, in-
fact, multiple threads can still access to resources at the
same time influencing (and corrupting) the shared ob-

jects. In order to solve such problem, only one thread
per-time was allowed to run in the kernel as if it was an
uniprocessor machine. This had the big unadvantage to
loose  all  the  parallelism  desired  in  the  kernel  space
making the presence of multiple CPU, effectively, use-
less. In this optic the project SMPng was created.

1.1. The SMPng effort

The SMPng project had the aim to make a fully multi-
threading, preemptive and non-reentrant kernel. It was
released for the first  time with the FreeBSD-5.0 RE-
LEASE in the 2003 in order to keep up until the FreeB-
SD-7.0 RELEASE in the 2007.

The initial effort was to offer a serie of suitable locking
primitives that could be used in order to lock subsys-
tem and then to switch the  BKL (Big Kernel Lock),
which was preventing more threads from accessing at
the  same  time  in  the  kernel,  into  a  blocking  mutex
called Giant. A new kernel memory allocator was im-
plemented and Giant was removed from the scheduler
activities and replaced by a more suitable spin mutex
called  sched_lock. As  last  step  the  new  concept  of
ithreads has been implemented.

Through ithreads, any drivers (or interested parties) can
install an interrupt handler and assign its own context
when running. This was offering the possibility to use
sleepable locks to all the interrupt handlers, along with
the  possibility  to  perform  a  lot  of  interesting  opera-
tions.



With time, more kernel subsystem was brought out the
influence of the Giant lock and their own locking was
assigned gradually to them (this included the network
parts, the VFS, the VM, etc.).

1.2. The current situation: post-SMPng

Nowadays, all the relevant subsystem of the kernel are
nomore  under  the  influence  of  the  Giant  lock.  The
sched_lock is no more present (it has been decomposed
in a serie of spinlocks called containers lock) and the
ithread mechanism has been completed in order to sup-
port a wider and more peforming mechanism called in-
terrupt filtering.

The SMPng project can be considered closed with the
RELEASE  7.0  which  showed  substantial  improve-
ments to the kernel scalability.

The main concept behind the FreeBSD locking support
is that consumers should know it well and use, where
more appropriate, the right primitive in order to solve
the locking problem as well as possible. This requires
both a good grasp on the problems to solve and on the
support provided by the kernel. 

2. The locking primitives

There are several locking primitives developed during
the SMPng timeframe which can be grouped, basically,
into:  mutexes,  r/w locks,  rm locks,  waitchannels  and
semaphores.

The  mutexes  are  primitive  offering  mutual  exclusion
for the codepath they want to protect. For example, if a
thread owns a mutex and another one contests on it, the
latter is unable to go on in the codepath until the former
one  doesn't  release  it.  This  ensures  atomicity  among
several  operations  of different  nature (eg.  accesses to
different members of the same structure).

The  r/w  locks  (or  read/write  locks),  traditionally  are
primitives  offering  2  different  level  of  acquisition:
reader mode and writer mode. If a thread owns the lock
in read mode other threads willing to acquire it in read
mode  will  be  allowed  to  run  the  protected  codepath
while other (willing to acquire it in write mode) won't.
Differently, acquiring the lock in write mode let it be-
have like if it is a mutex in regard of both kinds of con-
tenders.  r/w  locks  are  very  useful  for  protecting  re-
sources  which  are  accessed  often  in  distinct,  mixed
ways (reading and writing).

The rm locks (or read mostly locks) are very similar to
r/w  but  they  are  developed  in  order  to  offer  a  very
small overhead for the read acquisition and a thougher
one for the writing acquisition. rm locks are very useful
for  protecting  resources  accessed  very  frequently  for
reading and very few time for modify.

The waitchannels allow a thread to sleep for a certain
amount of time when it wakes up after another thread
calling  or  a  timeout  expiring.  Usually,  they  are  syn-
chronized with a controlling condition through an inter-
lock, which is passed to the primitive serving the wait-
channel and released just before to sleep (as well as it
is going to be reacquired just after the wake up). They
are very useful to synchronize accesses to a resource
which is busy for an indefinite timeframe.

Counting semaphores are very similar to waitchannels
but  for  them  the  controlling  condition  is  always  the
same: at the very beginning a counter is set to a value
bigger  than  0  and  when  a  thread  acquires  the
semaphore  it  does  decrease  the  counter.  Once  the
counter reaches 0 the other threads willing to acquire
the semaphore will sleep waiting for a token to be freed
by past owners. Please not that a semaphore with a start
value of 1 is just a mutex. Semaphores are considered a
legacy primitives and they are rarely used nowadays.

A general concept is that all the locks in the FreeBSD
kernel can support the  lock recursion. Lock recursion
means that an owner, already holding a lock, can ac-
quire  it  several  time  without  incurring  in  problems.
This feature is, however, dangerous and discouraged as
it is often a symptom of a wrong strategy. So, for all
the relevant  locking primitives,  recursion needs to be
selectively enabled (manpages referenced in this chap-
ter can help in the specific case).

However, in order to fully understand strong and weak
points for any primitive in FreeBSD it is convenient to
identify  3  different  categories  of  primitives  based on
the behaviour of contesting threads: spinning, blocking
and sleeping.

2.1. Spinning category

In this category the only one primitive available is the
mutex (mutex(9)).

A spin mutex basically supports mutual exclusion for a
code region as if a thread owns it and another contests
on it,  the latter  is  going to spin until  the former  one
won't release the mutex. In order words, the contesting



thread  will  remain  on  the  runqueue  of  the  scheduler
and  will  yield  code  execution  until  the  lock  got  re-
leased.  This  behaviour  has  some  interesting  side  ef-
fects.

First of anything, a context switch cannot be performed
for a thread owning a spinlock otherwise some dead-
locks  can  happen.  Immagine,  infact,  the  situation
where a spinlock owner gets preempted in favor of an-
other  thread  with  higher  priority.  If  the  latter  thread
wants  to  acquire  the  contested  spinlock  it  will  start
spinning,  but  it  will  remain  on  the  runqueue  so  the
scheduler will keep choosing it for running causing a
deadlock.  Then,  another  possible  deadlock  situation
cames from the  kernel context used by interrupts. The
top-half of interrupts handler, infacts, runs into a bor-
rowed   context,  ruled  by  a  particular  thread.  If  this
thread owns a  spinlock and the interrupt top-half wants
to acquire it another deadlock can happen. In order to
solve both such situations in the FreeBSD kernel spin-
locks need  to  disable  interrupts  at  all  when  acquired
(and to re-enable again when they are released). This
makes their  implementation a lot heavier  in terms of
overhead and consequences (increased interrupt laten-
cy) so that often using a spinlock is never a good idea.

There are, though, cases where spinlocks are the only
one possible choice. This is the case, for example, of
the above mentioned top-half of interrupt handlers run-
ning in kernel context. As long as the context has been
borrowed they cannot context switch in order to avoid
deadlocks so they are forced to use spinlocks.

2.2. Blocking category

For this category there are 3 different primitives avail-
able: mutexes (mutex(9)), r/w lock (rwlock(9)), and rm
lock (rmlock(9)).

A  blocking  primitive  basically  allows  contesting
threads to be saved into a specific  cointainer,  to per-
form some managing stuffs,  to be removed from the
runqueue and to be switched out from the CPU they are
running on. This means that a thread which contests on
a blocking lock won't be visible to the scheduler again
until the reverse operations will happen: removal from
the container, performing managing handover, reinsert
in the scheduler runqueues,  eventual preemption. The
container for blocking primitives is called turnstile.

One of the most important managing operations a turn-
stile performs on its threads is called priority propaga-
tion. Priority propagation is a mechanism which try to

avoid an high priority thread, blocking on a turnstile to
be starved by a lower priority one. For example, if the
owner of lock L has a priority A and another thread,
with the B priority (with B > A), sleeps on L the former
thread  will  inherit  priority  B in  order  to  increase  its
chance to run soon and make the latter thread available
as soon as possible. Obviously, the turnstile handover
will switch back the owner priority to A. Note that if
the owner is sleeping on another turnstile, the priority
will be propagated to the owner of the latter turnstile.
This  means  that  threads  and  turnstile  makes  chains
where the turnstiles are links and threads have the du-
plex  role  to  be  alternatively  owner  and  contender
(where the head has the highest available priority). This
makes clear why the turnstile preserve the concept of
owner and they are meaningfull without it: the owner is
just the head for a turnstile link. In order to support r/w
locks, turnstiles are organized in order to deal with sev-
eral subqueues (2 at the moment) so that just one turn-
stile can cater a lock fully. Ideally, however, there is no
limit to the number of subqueues a turnstile could han-
dle. For readers, however, no priority inheritance is im-
plemented for turnstiles mainly because it is impossible
to track efficiently all the possible owners. A possible
workaround for that can be to implement the concept of
owner of record for the turnstile, where just one reader
is tracked. However, it is, obviously, just a temporary
workaround in the  timespan  of the contested  reading
path.

In any case,  performing  priority  inheritance,  tracking
and finally performing a context switch (for any single
contender) is an high overhead operation, in particular
considering  that  often  the  time  passed  between  the
blocking and the subsequent wake up is not very much.
Considering that, an optimization has been implement-
ed  in  blocking  primitives  called  adaptive  spinning.
Adaptive spinning allows contesting thread to spin on
the  lock  if  the  owner  is  actually  running  on  another
CPU and so there are good chances the lock is going to
be released soon. If the lock owner is not running or
suddenly  got  sleeping  the  normal  behaviour  for  the
contesters happens. Please note that the adaptive spin-
ning  mechanism  is  implemented  in  the  primitives
themselves and not in the turnstiles. Finally, it worths
tell adaptive spinning works for r/w lock held in read
mode too but with the limitation of a timeout as long as
readers are not tracked.

Blocking primitives are thought to be the first choice in
terms of locking strategies for protecting resources in
FreeBSD as long as they are equipped with a full set of
optimizations  in order to cope with various  problems
and they don't disable interrupts (or even preemption)



in any case. It is obvious that as long as blocking prim-
itives perform a context switch as the very last opera-
tion, a thread cannot acquire them while already hold-
ing a spinlock.

2.3. Sleeping category

For this category there are 5 primitives available:  s/x
lock (sx(9)), lockmgr(lockmgr(9)), condition variables
(condvar(9)),  sleeping  points  (sleep(9))  and
semaphores (sema(9)).

A  sleepable  primitive  basically  allows  contesting
threads to be saved into a specific cointainer, to be re-
moved from the runqueue and to be switched out from
the CPU they are running on. The catering container is
called sleepqueue (sleepqueue(9)).

To a first sight the sleepqueue could seem very similar
to  a  turnstile,  but  there  are  a  bounch  of  differences.
First of anything, sleepqueues were developed in order
to implement only waitchannels (condvar and sleeping
points) and this reflects its own structure: sleepqueues
do  not  perform  any  priority  propagation  and  do  not
track  owners  at  all  (as  long  as  waitchannel  are  sup-
posed to not have any owner). Then, in order to support
efficiently waitchannels, sleepqueues offer the possibil-
ity to specify a timeout for the sleeping and a new pri-
ority for the threads once it does wake up. They also
offer  the  possibility  to  catch  signals  delivered  to  the
sleeping  threads  and  to  act  appropriately  once  they
wake up. Finally, it offers a full set of mechanisms in
order to check sanity of interlocks once they are passed
to  the  primitives.  It  is  obvious  that  sleepqueues  and
turnstiles have been developed with specific needs of
consumers  in mind and they are used to cater totally
different actions. More specifically, sleepqueues can be
seen as  unbound sleepers (for  long sleeps)  while  the
turnstiles  can  be  seen  as  bound  sleepers (for  short
sleeps). In order  to enforce correct  locking strategies
within the kernel  an assertive has been made that  no
blocking lock (and so no spinlock) can be held while
sleeping  on  a  sleepqueue.  This  happens  in  order  to
avoid threads to sleep while holding a mutex and inval-
idate  all  the  prior  work  done  (priority  propagation,
adaptive spinning, etc.). This rule can impose some in-
teresting problems that will be explored later.

The  sleeping  category  has  the  problem  to  suffer  of
some legacy features born in the pre-SMPng era (but
not only). For example, intially the sleep points were
the only way to implement waitchannels even if their
interface  is  messy  and  not  very  intuitive.  Condition

variables were introduced just some years later so that
shipping away sleeping points would  have result into a
not sustainable KPI breakage for thirdy part producers.
What should happen, in the future, is to bring the only
one feature still missing for condition variables (priori-
ty raising) and completely drop the sleeping point, try-
ing to deal with this heavy breakage. New code should,
in  any  case,  prefers  condition  variables  for  handling
waitchannels.

The lockmgr, also, is a legacy product which came di-
rectly from the 4.x era. It implements a r/w lock but it
also provides a very poor interface which is more simi-
lar to a sleeping point than a locking primitive. During
the very early times of 5.x era is become very popular
and  widespread  (in  particular  in  the  VFS and  in  the
buffer cache) for some of its feature (just like the inter-
lock  passing,  the  possibility  to  drain  consumers,  the
possibility to specify priority and timeouts to the primi-
tives, etc.) but it is actually deprecated in favor of such
primitives like sx lock and condvar. sx locks were cre-
ated in order to cope, initially, with the impossibility to
hold a lock while sleeping. Sometimes it is just too dif-
ficult (or simply impossible) to deal with all the sleep-
ing points in a codepath so it is much more convenient
to use an sx lock for such codepaths. In any case, as a
sleeping primitive, their usage is always deprecated in
favor of a better locking strategy involving rwlocks or
mutexes.

Finally  the  other  legacy  primitives  are  semaphores.
While it is correct to implement them through the use
of a  sleepqueue,  they  should  be dropped  in favor  of
mutexes  and  waitchannels  in  any  case.  In  FreeBSD,
just some legacy code use them or paradigms where the
value of 0 is passed in order to synchronize startup of
some piece of code within a subsystem (aio is an exam-
ple of that).

2.4. Tips

As the chapter shows, the categories help in identifying
a simple hierarchy between locks in the FreeBSD ker-
nel. This helps on various aspects like, for example, the
fact that LORs (Lock Order Reversals) and subsequent
deadlock can only happen between locks of the same
category and it does simplify heuristics and diagnostic
tools (for example,  spin mutexes have, embdedded, a
simple logic in order to catch for deadlocked owner).
One of the biggest objection which is often made for
the  locking  primitives  in  the  FreeBSD kernel  is  that
they are too much, sometimes complicated and  over-
lapping. If not considering the legacy supports (sleep-



ing points and lockmgr) and if some simple rules can
be followed, building a winning locking strategy is not
too difficult.

In particular a consumer should:

• Use a blocking primitive (mutex or rwlock) in the
common case

• Use a spinlock if and only if a blocking primitive
cannot  be used or  the path to be protected  is  ex-
tremely little

• Try  to  deal  with  unbound  sleep,  when  holding  a
lock, handling races after the drop instead than im-
mediately  switch  the  locking  strategy  in  order  to
use an sx lock

• Use an sx lock only when it is necessary to main-
tain resources consistency across several  (and fre-
quent) sleeps

• Avoid  completely  the  legacy  support  (lockmgr,
sleeping point and semaphore)

• Avoid in any case lock recursion

3. Atomic operations

Sometimes it is desired the ability to perform, atomi-
cally, very simple operations like, for example, an in-
crement or a bit setting. Simple operations, inside the
FreeBSD kernel,  can  be  performed  by using  directly
atomic operations. Such operations are guaranted to be
atomic even in the presence of interrupts which means
that, when necessary, they disable them (note: that's not
the case for a lot of new architectures which directly
provide the ability to perform atomic instructions with-
in  the  ISA,  however).  Atomic  operations  are  used,
mainly, as the ground for building more complex lock-
ing  primitives  (mutex,  rwlock,  etc)  but  they  can  be
used  also  directly  by  the  consumers  in  an  effective
way, sometimes helping in building a very low-over-
head locking infrastructure. The only side effect is that
atomic operations are always limited to operate on the
architecture bound so that  it is impossible to use them
in order to work on large resources safely. Example of
atomic operations usage can be located, for example, in
the locking primitives code (sys/kern/kern_mutex.c) or
in the file descriptor handling code (sys/kern/kern_de-
scrip.c) in order to see how they are used directly in or-
der to make safe code without locking.

Please note that there is no guarantee that the atomic
instructions  are  visible  across  multiple  CPUs.  More
specifically, there is no guarantee that the atomic oper-
ation updates the caches and relevant buffers for all the
CPUs involved (or invalidates the cache line where the
operation took place) in the SMP system.

Treacting  the  x86  architecture  as  a  starting  point,
FreeBSD guarantees that at least operations on 32 bits
(and smaller) memory operands can be atomic (like 8
and 16 bits). It is not guaranteed, instead, that all the
platform supports the 64 bits sized operations. That is
because  sometimes  it  is  too  difficult  to  make
lightweight atomic operations on 64 bits operands for
32-bits architecture (eg. x86) so, in order to avoid too
overheaded operations and forcing consumers in devel-
oping a wrong semantic the support is simply dropped.

Sometimes, however, ensuring that an operation will be
atomic is not enough in order to have a safe logic. One
would need to have guarantees also on the ordering of
performed operations.  That  is  when  memory  barriers
came in help.

3.1. Memory barriers

The FreeBSD kernel  offers the possibility to perform
atomic operations in conjuction with memory barrier.
This barrier basically decides the ordering of the atom-
ic  operation  in  regard  of  other  memory  accesses  in
terms of  timing.  For example,  if  a CPU performs an
atomic  operation  with  a  read  memory  barrier it
means that all the operations subsequent to this one are
going  to  be visible  to  the current  CPU just  after  the
atomic is completed. On the other side, if a CPU per-
forms an atomic operation with a write memory bar-
rier it means that all the operations prior to this one are
visible  to  the  current  CPU  before  the  atomic  takes
place. Memory barriers have proven to be very useful
in locks building (eg. the lock acquisition will have a
read memory barrier while the lock releasing will have
a read memory barrier) and in situations where timing
is important (context switches). Sometimes atomic op-
erations are also guaranted to not be reordered by the
architecture but usually that is not an assumption which
can be made within the kernel. Memory barriers, also,
specify for the compiler to not reorder or optimize such
instructions, resulting in a strong link for code execu-
tion.

3.2. Refcounts



Refcounts are a simple and effective way to handle on-
the-fly structures which can be freed in any moment.
Basically,  when a structure is  created and consumers
work  on it  asynchronously,  they can acquire  a  refer-
ence (which means simply bumping an integer value)
for such object so that, a subsequent destroy of it will
be  stopped  in  case  that  the  counter  is  not  0.  Often,
when dealing  with  a  refcount,  you will  need  to  also
deal with flags and other members so that a mutex is
needed  in  order  to  protect  those.  However,  there  are
simple cases where just a simple add / sub / compare
cycle is required to handle the refcount. In these cases
the refcount primitive can be used (currently, no man-
page is provided for it, unluckilly, but the relevant KPI
can be located into sys/sys/refcount.h).

The  refcount  interface  is  implemented  simply  with
atomic operations and all the operations are inline so
that one can get the fastest primitive available for han-
dling  a  refcount.  That  makes  it  the  preferred  option
when dealing with simple refcounts.

4. Miscellaneous

In conjuction with the above mentioned primitives and
mechanisms for building successful  locking strategies
there are other minor mechanisms that worths to know
about in order to deal with multithreading in the FreeB-
SD kernel.

The  first  concept  to  be  introduced  is  the  scheduler
barrier. A scheduler barrier is a mechanism which im-
poses  some constraint  on  the  scheduling  of  involved
threads in a way or another. The schedulers offer main-
ly 2 scheduling barriers: one controlling threads migra-
tion and another one controlling threads execution. A
thread which runs a codepath into a section closed be-
tween the pair of sched_pin() / sched_unpin() can as-
sume that, while that code executes it will not migrate
to run on another CPU. This assumption is very impor-
tant, for example, when a thread is accessing to per-cpu
datas and it wants to maintain a consistency of opera-
tions.  The second barrier,  instead,  is  rappresented by
the sched_bind() function. It does ensure that the pro-
vided thread runs only on the specified CPU id. This
barrier is particulary useful for kernel threads, created
for  special  purposes,  which  need  to  match  1:1  the
CPUs present  in the system. Sometimes,  this mecha-
nism is used, erroneously, in order to force the execu-
tion of a thread (created and scheduled very early in the
kernel lifespan) on the CPU0 before the other CPUs are
started. That is a clear interface abouse which needs to
be avoided as much as possible and replaced with ef-

fective  code.  Note  that  both  sched_pin()  and
sched_bind() are scheduler specific and any new sched-
uler needs to implement its own in order to maintain
the support.

Sometimes, it is desired to disable preemption for some
codepaths in order to avoid datas corruptions. In order
to do that the pair of function  critical_enter() / criti-
cal_exit() is offered by the kernel. If a codepath is sur-
rounded by such functions it is ensured that the threads
preemption  will  be  disabled  while  it  is  executed.  As
long as this feature impacts the whole system (infact,
differently by the scheduler barriers, it doesn't just in-
volve  the  invoking  threads,  but  even  the  others)  it
should be used very carefully if not avoided at all. Dis-
abling preemption,  by a consumer,  can be useful,  for
example,  if  the consumer needs to deal  with per-cpu
datas but it can not tollerate modify to such datas by
eventual threads, while performing.

If disabling preemption often is a strong condition, oth-
er times threads could have the necessity to disable in-
terrupts at all. The FreeBSD does not support a way to
do that in a machine independent way, though an un-
offical one can be found. Several places in the kernel
are getting used to disable interrupts through the spin-
lock_enter() interface (and to re-enable them through
spinlock_exit()). As long as this is an operation which
can be potentially very dangerous for performance (if
not well used interrupt latency can be increased dram-
matically) the use of such interfaces is highly discour-
aged and should be avoided as much as possible.

Sometimes there is the necessity to let run a function
(often for managing) on a set of specified CPUs (or all
of  them).  smp_rendezvous() and
smp_rendezvous_cpu() can  perform  such  task  by
stopping the current activity of the CPU, passing it a
setup function, a rendezvous function and a teardown
function  and  waiting  for  them  to  be  executed.  That
mechanism is often used in order to perform on-the-fly
setups on all the CPU alredy up and running, but it can
also be used in order to implement facilities like rm-
locks (sys/kern/kern_rmlock.c for a reference).

5. Conclusions

In this paper the full set of synchronization primitives
has been presented into an approach which should help
the reader to understand what is behind the scene and
help him in making the right choice in terms of locking



approach choosen. In any case there is still a lot of on-
going work for the SMP infrastructure.

For example, legacy locking primitives should be com-
pletely  removed  by  all  the  subsystem and  cutted  off
from the kernel; primitives already existing can be fur-
ther refined both in terms of performance and usability
(just think about back-off algorithms for spinlocks and
adaptive spinning parts,  new wake up algorithms ex-
plored, etc); Giant which still needs to be removed by
some subsystems  (and  ideally  to  be  removed  by  the
whole kernel); locking strategy in the consumers which
can be refined and improved.
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