
An Overview of FreeBSD/mips

M. Warner Losh
Cisco Systems

Broomfield, CO
imp@freebsd.org

1 Introduction

Embedded FreeBSD[1] has been expanding its reach over
the past few years. FreeBSD now boots on more than
just server class x86 machines. While most of the work
in this area has only recently been part of the public
FreeBSD, the history here is much longer and older. BSD
has a long history in the embedded space. This her-
itage has been reflected in both OpenBSD and NetBSD
for some time now. FreeBSD borrows from this rich
heritage and adds to it. Companies have been enhanc-
ing FreeBSD’s platform support to take advantage of the
other features in FreeBSD[2].

FreeBSD/mips may have only been committed to the
tree this year. However, FreeBSD has been running on
the MIPS architecture since the FreeBSD 3.x time frame
(1999!). Numerous efforts over the years have been made
to get FreeBSD running on MIPS hardware. These ef-
forts never start from scratch but have always leveraged
past efforts and other systems. Recently all these efforts
have come together, resulting in FreeBSD support in 8.0.

The same currents that have caused the FreeBSD/mips
port to come together after many years have also been
pushing development of other areas important to the em-
bedded world. A number of new devices found only in
embedded systems have been added to FreeBSD. Hard-
ware vendors are starting to fund FreeBSD improvement
projects (mostly for their hardware). Build system im-
provements have made it easier to deploy FreeBSD in
smaller and smaller footprints. All of these changes have
made FreeBSD a more viable embedded platform.

2 MIPS overview

The MIPS architecture has been around for a long time.
In this time, it has undergone a steady evolution. De-
scribing all these changes in detail is beyond the scope

of this paper. A few highlights of the history, however,
will aid in understanding some of the issues and chal-
lenges with FreeBSD/mips.

In 1984, MIPS Computer Systems Inc. was formed to
bring the MIPS architecture developed at Stanford to
market. The MIPS architecture started out as a 32-bit
architecture, which defined only the user level instruc-
tions. The CPU control details necessary for kernel op-
erations were left to the implementor to decide. These
early iterations were labeled MIPS I and MIPS II. In
1991, 64-bit extensions were added in MIPS III with
the introduction of the R4000. Again, the details of the
CPU control were left to the implementor. In 1992, Sil-
icon Graphics Incorporated (SGI) acquired MIPS Com-
puter Systems Inc. after the hoped for markets for the
R4000 failed to materialize. Finally, MIPS IV and MIPS
V was defined to include many SIMD operations, and a
few other exotic instructions. Neither one of these In-
struction Set Architectures (ISA) gained widespread use.
Each of these ISA levels was a strict superset of the prior
one with no optional parts. After all these were defined,
the market crashed almost taking SGI down with it, and
the future of the MIPS architecture was in doubt.

While SGI was in the process of failing, other vendors
began integrating MIPS cores into Application-Specific
Integration Circuits (ASICs). These vendors created a
market for the MIPS architecture in embedded systems.
They used MIPS cores they had created, which differed
from the R4000 in their CPU control details. Software
vendors found that the differences difficult to deal with.

In 1998, SGI spin MIPS Technologies Inc. out to raise
cash. Learning from the mistakes of the past, MIPS
Technologies’ architects realized that the strict superset-
ting of the ISAs was a liability. It wasn’t possible to
pick and choose for a particular application which parts
could be implemented. In addition, the differing details
of CPU control (especially the TLB/MMU control) had
a higher software cost than was saved in hardware im-
plementation. MIPS Technologies defined MIPS32 and



MIPS64 ISAs with these lessons in mind.

First, instead of having an all-or-nothing approach, a
core set of functionality was defined as mandatory, with
additional optional features layered on top via Application-
Specific instruction Extensions (ASEs). ASEs allowed
an ordered way to expand the ISA for such things as
Digital Signal Processing (DSP) operations, vector pro-
cessing or the MIPS-16e mini-instructions without bur-
dening all implementations with these extra limited-use
features.

Second, the CPU control model was defined to increase
OS portability between members of the MIPS32 and MIPS64
families. MIPS32 was defined to be all of the instruc-
tions in MIPS II, plus a 32-bit MMU that is very simi-
lar to the 32-bit section of the R4000’s MMU. MIPS64
is a superset of MIPS IV and contains MIPS V instruc-
tions as an option. Its MMU is directly from the R4000’s
MMU, the 32-bit portion of which is compatible with
MIPS32.

A few years later, MIPS Technologies revised the ISAs
to come up with MIPS32r2 and MIPS64r2. These addi-
tions and changes further helped the OS writer by pro-
viding single instructions to flush the instruction pipeline,
deal with interrupts and otherwise correct many places
where the programmer would need a seemingly arbitrary
number of NOPs to avoid pipeline hazards1.[3]

As far as I know, all ASICs with embedded MIPS cores
produced today conform to one of these last four ISAs.
The few pseudo-MIPS cores which introduced since 2000
have quickly disappeared and been replaced by real MIPS
implementations after becoming legitimate licensees of
the MIPS technology.

3 FreeBSD/mips History

FreeBSD/mips has a long history. It owes its origins to
the MIPS support that was in 4.2BSD for DEC’s DEC-
stations, also known as pmax. This original port was up-
dated for subsequent releases and has made its way into
both NetBSD and OpenBSD. The original FreeBSD port
to MIPS was done around 1999 for FreeBSD 3.x by Ju-
niper’s products. An independent effort to bring MIPS
support to the FreeBSD community started around the
same time frame, but it was never completed and re-

1NOP instructions are used to clear the pipeline and parallelexecu-
tion units when memory mappings change. Too many will slow down
everything. Too few causes crashes.

moved 3 years later. So FreeBSD on MIPS remained
confined to hardware from Juniper for many years. Ef-
forts started in the Perforce repository in 2002 and again
in 2006. These latter efforts resulted in FreeBSD/mips
booting multiuser. In parallel, Juniper kept up their port
and the two code bases were merged and committed in
2008. Since it has been committed, developers have en-
hanced the port with new features and platform support.

3.1 FreeBSD 3.x Juniper MIPS

Juniper Networks started life in the late 1990s to build
routers to compete with Cisco Systems. Juniper based
their routers on FreeBSD and ported FreeBSD to MIPS
to support one of their platforms. This port’s details
aren’t known outside of Juniper. Juniper wanted to do-
nate this port to the FreeBSD project, but was unable
to complete the process. The port was to a specialized
MIPS processor and Non-Disclosure Agreements (NDA)
issues prevented a simple release of the sources. In ad-
dition, the project desired a publicly available reference
platform for FreeBSD/mips. This presented a chicken
and egg problem to both Juniper and any would-be port
maintainer. After the Internet bubble burst, efforts to
contribute the code took a lower priority than survival.

3.2 FreeBSD/mips in CVS 1999

Initially independent of the Juniper efforts, I committed
some initial support for MIPS to the tree. I added basic
tool chain and libc support. I started porting the kernel,
but I never finished that work. When I found out about
the possible Juniper work, I stopped working on the port,
and never restarted. The code was removed from the tree
in 2002.

3.3 Juli Mallett MIPS

Ironically, the removal of the mips code lead to a revival
of interest in FreeBSD/mips. Juli Mallett, a FreeBSD
developer, ported FreeBSD to R4000-based SGI machines.
She created a Perforce project called simply “mips” in
late 2002. The port booted to the single user prompt,
but she stopped work before the port was stable enough
to run in multi-user mode. Although not ultimately suc-
cessful, the trail blazed by Juli helped the later mips2
efforts.



3.4 Cabal MIPS

Shortly after Juli’s stopped working on the port, the so-
called “Cabal MIPS” effort was started. At the BSDCan
2006 conference, I gave a talk on embedding FreeBSD
on arm platforms. Several people at the conference were
interested in FreeBSD on MIPS and lobbied several se-
nior kernel developers to work on a port. The “Cabal
MIPS” effort tried to independently recreate the MIPS
port, not using Juli’s work. These efforts were done in
secret to avoid a public failure. However, the secrecy
was a mistake and when these kernel developers were
busy with other things, the project ground to a halt. The
build tools and basic kernel framework were the only
things to be completed.

3.5 mips2

Wojciech Koszek and Oleksandr Tymoshenko took the
“Cabal MIPS” base and added some of Juli Mallett’s
code and the “mips2” project was born. The project was
named for the path in the Perforce repository where the
code resided://depot/projects/mips2. Myself and
Ollivier Houchard mentored Wojciech and Oleksander’s
efforts as they progressed, providing guidance on how
to limit the scope to make it easier to finish the port.
This project achieved single user boot in late 2006 on the
emulator and multi-user boot on real hardware in early
2007. Cavium Networks took a snapshot of this work
published in April 2007 and ported it to their Octeon pro-
cessors. More on these efforts later. After this early suc-
cess, the project started losing steam as efforts switched
from stability to merging the changes back into the FreeBSD
main line of development (-current).

3.6 FreeBSD 6.1 Juniper MIPS

Meanwhile, Juniper had forward ported their MIPS code
to 4.x and later 6.x. They added support for MIPS ASICs
in their products. Once they had a stable port for their
real hardware, they produced a stripped down version
for standard MIPS hardware with all code covered by
NDA removed. They approached me to review the code
in September of 2007, but I lacked the time to do a thor-
ough job. I determined that they ported FreeBSD 6.1 and
not -current, and there would be work needed to bring
it up to FreeBSD -current. All the years that Juniper
had spent hardening its MIPS port might not benefit the
FreeBSD community due only to my lack of free time.

3.7 Merged mips2 and Juniper MIPS

In December 2007, Cisco Systems hired me to complete
the FreeBSD port to MIPS. This effort targeted one of
the Cavium Networks Octeon chips. Andre Hedrick,
Randall Stewart, Ollivier Houchard and I took code from
Cavium’s port, and the “mips2” project and merged the
two together. Since both of these code bases were based
on recent FreeBSD -current snapshots, we felt that it
would be easier to port to FreeBSD -current than Ju-
niper’s 6.1 port. The Cavium base was from April 2006,
and the mips2 base was from November 2007. Cavium’s
port was from April 2006, while the mips2 branch had
last been updated in November. Andre and I worked to
forward port Cavium’s changes to the mips2 code base,
but we encountered many problems.

In reaction to these difficulties, I took a fresh look at
Juniper code. Juniper allowed me to share the code for
its port for to and evaluate the best path forward for the
FreeBSD project. Juniper’s code was very strong for the
core architectural support, but lacked support for any of
the System-on-Chip (SoC) ASICs that the mips2 port
supported.

We created a merged port called jnpr-mips which took
the best from both code lines. We took the boot se-
quence, SoC framework, SoC support and peripheral drivers
from the mips2 code. We took the processor and vm
support from the Juniper base. Most of the code for
src/sys/mips/mips andsrc/sys/mips/include came
from the Juniper tree, while much of the rest came from
the mips2 tree. We merged Cavium’s Octeon support
code into this merged code base and was used to validate
the results. Once that system was working multiuser, we
validated the other systems supported by mips2 and cor-
rected problems.

After the port stabilized, we committed the code to FreeBSD
-current in April 2008. The merged system ran well both
in simulation and on real Octeon hardware. The MALTA
board worked in emulation. The Routerboard RB/532
board worked. I presented a talk at BSDcan 2008, and
based on feedback from the talk I made a number of
tweaks to the port. The Octeon support code has not
yet been committed to the tree.

The project owes a large debt of gratitude to Juniper Net-
works for its code base and persistence in getting its code
into the tree. The port is much better for Juniper’s ef-
forts.



3.8 Post commit updates

Since the merged port was committed, a number of de-
velopments have happened relating to FreeBSD/mips.
Bruce Simpson has added support for Broadcom MIPS
cores. Oleksandr Tymoshenko has started working on
Atheros AR71xx/AR91xx support. He’s currently de-
bugging the Ethernet driver for this SoC. I’m working to
support the Alchemy Au1xxx chip, and the Plat’Home
OpenMicroServer board. Finally, Cavium Networks has
made available to select developers its older mips2-based
port. Cavium’s port also supports n32 and n64 ABIs,
as well as SMP. Finally, other MIPS vendors have con-
tracted with developers to add support for FreeBSD/mips
for their ASICs.

4 Current FreeBSD/mips Status

FreeBSD/mips runs on a variety of platforms. Support
for the o32 ABI is present in the base system, with n32
and n64 ABI support on deck. Currently, the system
is single core, but multicore support is present in the
Octeon support code. A number of new platforms are
being worked. All the normal FreeBSD features are sup-
ported in FreeBSD/mips, except dtrace, gdb and ficl sup-
port in the boot loader.

4.1 MIPS Platform Support

FreeBSD/mips targets the recent generation of MIPS pro-
cessors. The port targets processors that conform to ei-
ther revision of the MIPS32 or MIPS64 ISAs. Older
processors that were used to create these ISAs may also
work but aren’t the primary focus of the port at this time.
Multicore support will be added with the Cavium inte-
gration. In addition to the processor support, code for
many MIPS-based system on chips’ peripherals are sup-
ported. The IDT RC32432, Infineon ADM5120, and
Broadcom bcm5365 mips32-based SoCs are supported.
Work is underway to add support for the Atheros AR71xx/AR91xx
family, the Alchemy/RMI Au1550, and MIPS64 Cavium
Octeon family.

4.1.1 Infineon ADM5120

The Infineon ADM5120 ASIC has a MIPS 4Kc core im-
plementing the MIPS32 ISA. The core runs at 175MHz

giving a performance 227 MIPS. Integrated into the ASIC
are a switch engine, a 10/100M PHY, an embedded PCI
bridge, an embedded USB 1.1 host, and controllers for
UART, SDRAM, and Flash. The design is targeted at
SOHO/SME Gateway, wireless routers and access points,
NAT wired routers, print servers, and VPN gateways.
Many boards integrating the ADM5120 are inexpensive.[4]

The platform’s reference hardware is the ADM5120-based
EdiMax reference boards. The code supports the built-
in NIC, Ethernet switch engine and the serial console.
Both the PCI and non PCI versions of the ADM5120
are supported. NOR Flash, USB, and I2C support are in
progress.

Most of the ADM5120 boards available today are based
on the EdiMax reference, so FreeBSD/mips usually works
on them. Some of MicroTik’s RouterBoard products
are also believed to work, but no configuration files for
them have been published. Any MiniPCI card that works
in these boards and has a FreeBSD driver will work.
The Atheros Wireless driver, ath(4), works well on this
board.

4.1.2 IDT RC32432

The IDT Interprise RC32432 ASIC is based on a MIPS
4Kc core, implementing the MIPS32 ISA. The proces-
sor runs at speeds from 200MHz to 400MHz depending
on the model. The ASIC integrates an Ethernet switch, a
10/100M PHY, an embedded PCI bridge, memory con-
troller, DMA engines, a UART, SPI, and I2C bus. This
part target the mid-range of VPNs, wireless APs and
routers built-in to the ASIC as well[5].

The MicroTik RouterBoard 532 incorporates an IDT RC32432
ASIC into its design. It provides a NAND memory, a CF
interface, and additional Ethernet ports via the VIA/Rhine
VT6105 chip set[6][7]. The built-in NIC, UART and
PCI bus are supported. The VT6105 is supported by
the vr driver. Any MiniPCI card with a FreeBSD driver
works. The ath(4) driver works well.

4.1.3 Broadcom bcm5365

Broadcom makes a wide variety of ASICs with embed-
ded MIPS processors. These ASICs are used in a wide
range of networking applications that range from man-
aged switches to wireless access points. These proces-
sors implement the MIPS32 ABI. In addition, they have



the typical devices found in embedded targets, including
NOR and NAND Flash support, 10/100M or 10/100/1000M
Ethernet PHYs, PCI host bridge, SDRAM, and UARTs.
Sometimes switch engines, I2C, or SPI interfaces are
also provided. The BCM5365 is used primarily in man-
aged switches [8].

The Sentry5 is a family of managed switches[9]. FreeBSD/mips
supports the built-in NIC and switch, the UART and
SiBus enumeration. The latter is unusual in the embed-
ded world as it allows for different embedded devices
to be enumerated in a manner similar to the PCI bus.
Typically, embedded devices are known to the OS only
through tables that are compiled into the OS based on
the exact chip model.

Although initially targeted at the managed switches, FreeBSD/mips’
support for the Broadcom MIPS is done in a generic
fashion that allows it to work on a wider range of chips
from Broadcom. The exact range is difficult to deter-
mine due to Broadcom’s technical detail disclosure poli-
cies. One known issue is that the core in the bcm47xx
ASICs has pipeline bugs requiring compiler modifica-
tions to work around. Patches for gcc are available, but
they apply to a small number of gcc 3.x releases and
are difficult to use with more recent gcc 4.x releases.
BCM53xx-based ASICs do not have this bug, and should
work.

4.1.4 Coming Soon

Efforts are underway to support the Atheros AR71xx/AR91xx,
the Alchemy Au1xxx, and the Cavium Octeon families
of ASICs. In addition, some companies with MIPS-
based ASICs are bringing up FreeBSD on their hard-
ware, but do not wish the specifics to be public until they
are ready to release. The following describes what each
publicly announced porting effort is targeting. Since
these efforts are ongoing, only the hardware is described.

The Atheros AR71xx/AR91xx series of ASICs integrate
a MIPS 24K core running at speeds ranging from 300 to
680MHz. The core implements a MIPS32r2 ISA and has
a number of built-in peripherals for gigabit networking,
USB, audio, UART, Flash and RAM. This device targets
the high-end wireless market when paired with Atheros’
802.11a/b/g or 802.11n radio cards or chip sets[10].

The RMI/Alchemy Au1xxx series of ASICs is a network
security processor targeted at wireless and wired appli-
cations. This includes wireless access points, network-
attached storage, or set top boxes. The Alchemy Au1

core is common to all members of the family and imple-
ments the MIPS32 ISA with enhancements. The family
includes a number of integrated peripherals for 10/100M
Ethernet, USB 1.1 (both host and device), sound, se-
curity (crypto) as well as the traditional UART, Flash
and RAM controllers. The processor runs at between
333MHz and 500MHz[11].

The Cavium Octeon network engines target high-end routers
and switches. They implement the MIPS64r2 ISA with
the cnMIPS cores tied together on coherent peripheral
bus. The engines run from 300-800MHz and have be-
tween 1 and 16 cores. These chips span the range from
100Mbps to full-duplex 20Gbps and have an extensive
set of peripherals to optimize network throughput. In ad-
dition, a rich set of cryptographic features is present[12].
The Octeon port will likely drive SMP support in FreeBSD/mips.
Cavium networks has donated code for a version of the
FreeBSD/mips dating from about April 2007 which sup-
ports all Octeon ASICs, SMP, full 64-bit mode opera-
tion, additional ABIs (n32 and n64) and building FreeBSD
on a Linux host.

4.2 Feature Support

The FreeBSD/mips port supports all the normal features
in FreeBSD. The FreeBSD Handbook[2] documents FreeBSD,
its features, use and configuration.

There are a few caveats presently for the MIPS port.
Systems running on the MIPS architecture support three
ABIs, but FreeBSD/mips supports only one of them. Sup-
port for SMP for multicore ASICs is in the works. Linux
emulation is not supported. A few programs need to be
ported to MIPS still.

4.2.1 MIPS ABI Support

The MIPS architecture has a rich history. Unfortunately,
this rich history has led to a confusing accumulation of
ABIs. On most architectures, theres only one ABI, but
in MIPS there are three. The original MIPS ABI was
defined by AT&T with its original port to the MIPS pro-
cessor. It is a 32-bit ABI called “o32” or sometimes
just “32.” When SGI shipped the 64-bit R4000-based
systems, it invented two new ABIs: “n32” and “n64.”
In “n64,” registers, pointers and longs are all 64-bits
in length. SGI discovered that this broke many appli-
cations, so it created “n32” to bridge the gap between
“o32” and “n64.” In “n32,” all registers are still 64 bits,



but ints, longs and pointers are 32 bits. FreeBSD imple-
ments “o32.” Support of “n32” and “n64” is in progress.

4.2.2 SMP Support

SMP support for MIPS hasn’t been the primary focus of
the project. Most of the chips supported by FreeBSD/mips
have been single core only. For single core, the SMP is
completely useless, and compiling an SMP kernel adds
nothing but overhead. However, many of the high-end
embedded network processors have been moving to multi-
core for some time now. These processors benefit from
an SMP kernel. The Cavium Networks FreeBSD code
has support for SMP included in it. While there are some
code base differences, as noted above, SMP support is
being integrated along with the Octeon support.

4.2.3 Rough Edges

A number of programs in the system require machine-
dependent code to function properly. Many of these pro-
grams have been updated with MIPS-specific code al-
ready, but haven’t.

• Debugging with gdb program isn’t supported, al-
though work is in progress to make it work.

• The default system installation program, sysinstall,
isn’t built, since embedded targets use a different
means to install FreeBSD.

• The dtrace feature doesn’t have the MIPS-specific
code necessary to make it work.

• The boot loader doesn’t support the FORTH ficl
interpreter.

Hardware floating point for MIPS isn’t supported on those
processors that actually have hardware to do floating point.
None of the currently supported processors have floating
point, but such processors exist. The kernel doesn’t im-
plement hardware floating point emulation, so programs
compiled for those processors won’t work.

Linux/mips emulation is not present. The Linuxulator in
FreeBSD consists of three parts:

1. The machine independent portion, to implement
semantics that are common to all Linux architec-
tures.

2. The machine depend portion, to implement ma-
chine specific details like system call translation
and register calling conventions.

3. A set of libraries from the FreeBSD ports collec-
tion which provide applications the shared libraries
to run.

The MIPS-specific code has not been written, nor has
a set of Linux/mips shared libraries been added to the
current Linux emulation port.

Finally, since ports system does not support cross com-
pilation, one needs to have a real or emulated MIPS ma-
chine to build ports or packages. There are patches cir-
culating for limited cross compilation support. However,
much of the cross compilation support must reside in
the actual source packages. Many do not support cross
building at all. Since there is no standard for configur-
ing cross compilation, work must be repeated for each
package that is cross buildable. There are many logis-
tical issues, such as packages that run natively to build
binaries for a target system, that make this problem dif-
ficult.

4.3 Embedded Device Additions

FreeBSD has traditionally been a server operating sys-
tem. In the embedded space, the mix of devices and
busses is different. With the move into this space, FreeBSD
has enhanced its support for these technologies. NOR
Flash devices have a standard interface called CFI. SD
and SDHC cards are often used when larger storage is
required. A number of different serial bus connections
are more common in the embedded world. Finally, the
USB stack now supports device-mode operation in addi-
tion to host-mode operation.

4.3.1 NOR Flash

NOR Flash uses a parallel interface to the host. This al-
lows the host to memory map the NOR device into its
address space and sometimes execute code directly from
the NOR flash. The NOR devices have a standardized
control set called Common Flash Interface (cfi). This
interface is defined by an industry standards group, but
many vendors make proprietary additions to the stan-
dard. FreeBSD supports these devices, and usually one
only needs to write a tiny amount of glue code to make
them work in a new platform. FreeBSD supports reading



and writing these devices and will erase pages as neces-
sary to accomplish these tasks.

4.3.2 SD Card

An SD Card is a small, postage-stamp-sized card. The
current standard defines two classes of cards: SD cards
are smaller than 4GB; SDHC cards as 32GB, although
minor revisions to the latest standard are expected to
push that limit to 2TB. SD Cards are popular in em-
bedded environments because they can be implemented
with a very low pin count. FreeBSD fully supports both
SD and SDHC cards. The newer miniSD and microSD
cards are also support, since they are compatible with
either SD or SDHC cards. SD Cards are cheap, readily
available and easy to swap in and out of a system. They
are good when you need more data than NOR Flash can
provide and can afford the expense of having a connector
for the flash.

4.3.3 Serial Bus Technologies

Serial busses are more common in embedded systems.
They keep the pin count down, which reduces cost. I2C
is the most common of these technologies. The I2C bus
is a two-wire bus that multiplexes the single data line be-
tween sender and receiver. It is used for everything from
EEPROMs to temperature or environmental sensors. It
has many cousins that use I2C as a transport for a higher
level of organization. One cousins is the SMBus, used
for environmental sensors. FreeBSD supports I2C and
its variations.

Another class of serial bus is those busses where data
flows bi-directionally between the master and the slave.
The SPI bus falls into this category. Data is clocked bi-
directionally between the master and the slave device af-
ter the master initiates the transaction. NAND-type flash
is the primary use for the SPI bus, although SD Cards
also support being read/written over the SPI bus. Closely
related to the SPI bus is the I2S bus, used in audio appli-
cations to stream digital audio to a slave chip that con-
verts the stream to analog signals to play over speakers
or headphones. Both of these busses are supported in
FreeBSD and have a few drivers for each. However, at
this time, reading SD cards via the SPI bus is not yet
supported.

The final class of serial bus technologies may already
be familiar to desktop and server computer users. These

are busses that have a hierarchy of sorts. The best known
examples of this are Firewire and USB. Firewire, a peer-
to-peer bus, has been supported in FreeBSD for some
time. It is used in some embedded applications such as
MP3 players, but its use is declining. USB is organized
in a tree fashion, with USB hubs acting to fan out the
single connection to multiple connections for things like
printers, scanners, disks, thumb drives, serial ports, and
more. As a host, FreeBSD has supported USB for many
years. Recently, a new USB stack has been integrated
into FreeBSD which will allow it to act as a USB de-
vice. This sort of operation is also called “USB Gadget
support” by some systems. It allows the FreeBSD box
to emulate a USB Ethernet connection, a USB TTY con-
nection, etc. This functionality is required for things like
printers that interface to the outside world via USB.

4.4 Build System Enhancements

As FreeBSD has evolved from primarily a server and
desktop system into an embedded OS, the build system
has evolved with it. Initially, NanoBSD targeted pro-
ducing a small version of FreeBSD that matched the
host’s architecture. NanoBSD now supports both na-
tive and cross building targets. In addition, FreeBSD’s
base system now has the ability to install cross compil-
ers into onto the system so that software outside of the
base (/usr/src) can use them.

4.4.1 NanoBSD

NanoBSD is a collection of scripts to produce smaller
FreeBSD images. It works within the FreeBSD build
paradigm to remove those parts of FreeBSD you don’t
need on the target system. It also provides a stylized
framework for dealing with run-time configuration data.
If you have enough space, it even allows for in-place
upgrades using a ping-pong strategy to bounce between
two partitions. One partition is active, and the other is
used for upgrades. This allows bad upgrades to be re-
verted to the last working configuration.

NanoBSD has been enhanced with cross-compilation sup-
port. It is now possible with NanoBSD to build an en-
tire ARM system on an x86 box, for example. This al-
lows one to use very fast development machines to build
images for an embedded system. NanoBSD relies on a
number of other tools in the system to create its images.
A number of bugs in these tools have been corrected.



4.4.2 Cross Compiler installation

One of the nicer features of FreeBSD is its ability to
cross build itself. It does so by a rather complicated
mechanism, leveraging Makefile magic to accomplish
its goals. However, unless you’re well integrated with
the FreeBSD build system, and have a built tree laying
around, you’re not able to leverage this technology.

Until now, that is. Recently, the build system was patched
to allow creationand installationof cross compilers.
These cross compilers follow the gnu autoconf conven-
tions to allow proper probing for cross-building support.
These compilers offer advantages over the normal cross-
build tools that can be installed from the ports collec-
tion. Since they are the actual system compilers, their
behavior exactly matches a native FreeBSD build. They
have also been tested with FreeBSD natively in numer-
ous builds and cross builds that are done as part of the
project’s normal infrastructure.

5 Conclusion

Although a relative newcomer to the tree, FreeBSD/mips
has a long history behind it. The port is gaining momen-
tum, and promises to be with us for quite a while. New
code to support different ASICs is entering the tree all
the time. Vendors are starting to approach the FreeBSD
project to integrate their code into the tree. FreeBSD
supports more and more devices important in the em-
bedded world, which makes deploying FreeBSD/mips
easier. FreeBSD build system has been enhanced to bet-
ter support embedded development. FreeBSD/mips is
an exciting new possibility when considering operating
systems to run your MIPS-based embedded device.

References

[1] FreeBSD Home Page. n.d. FreeBSD Project.
February 2009. http://www.freebsd.org/.

[2] FreeBSD Handbook. n.d. FreeBSD Doc Project.
February 2009.
http://www.freebsd.org/doc/enUS.ISO8859-
1/books/handbook/.

[3] Dominic Sweetman,See MIPSR©Run. San
Francisco: Morgan Kaufmann, second ed., 2007.

[4] ADM5120 Network Processor Data Sheet, Rev
1.1. München, Germany, March 2005.

[5] Interprise Integrated Communication Processor
79RC32434. November 2002. IDT. February
2009.
http://www.idt.com/index.cfm?genID=79RC32434.

[6] Microtik Routerboard RB/532. n.d. DD-WRT
Project. February 2009. http://www.dd-
wrt.com/wiki/index.php/MikrotikRouterboardRB/532.

[7] Microtik Routerboard RB/532. n.d. Microtik.
February 2009.
http://www.routerboard.com/rb500.html.

[8] Broadcom Corporation, “BCM6365/BCM5365P
Product Brief.” PDF Product Brief, 2004.

[9] BCM5365/5365P Sentry5TMSecured Switch
Processor. n.d. Broadcom Corporation. February
2009.
http://www.broadcom.com/products/Wireless-
LAN/802.11-Wireless-LAN-Solutions/BCM5365-
5365P.

[10] Products & Technology : AR7100. n.d. Atheros
Communications. February 2009.
http://www.atheros.com/pt/AR7100.htm.

[11] Alchemy Processor Family. n.d. RMI
Corporation. February 2009.
http://www.rmicorp.com/products/Au1550.htm.

[12] Products: Octeon MIPS64. n.d. Cavium
Networks. February 2009.
http://www.caviumnetworks.com/OCTEONMIPS64.html.


