
Isolating Cluster Jobs for Performance and Predictability

Brooks Davis, Michael AuYeung
The Aerospace Corporation

El Segundo, CA
{brooks,mauyeung}@aero.org

Abstract

At The Aerospace Corporation, we run a large
FreeBSD based computing cluster to support engi-
neering applications. These applications come in all
shapes, sizes, and qualities of implementation. To
support them and our diverse userbase we have been
searching for ways to isolate jobs from one another
in ways that are more effective than Unix time shar-
ing and more fine grained than allocating whole nodes
to jobs. In this paper we discuss the problem space
and our efforts so far. These efforts include implemen-
tation of partial file systems virtualization and CPU
isolation using CPU sets.

1 Introduction

The Aerospace Corporation operates a federally
funded research and development center in support
of national-security, civil and commercial space pro-
grams. Many of our 2400+ engineers use a variety of
computing technologies to support their work. Engi-
neering applications range from small models which
are easily handled by desktops to parameter stud-
ies involving thousands of cpu hours and traditional,
large scale parallel codes such as computational fluid
dynamics and molecular modeling applications. Our
primary resources used to support these large appli-
cations are computing clusters. Our current primary
cluster, the Fellowship[Davis] cluster consists of 352
dual-processor nodes with a total of 1392 cores run-
ning FreeBSD. Two additional clusters, beginning at
150 dual-processor nodes each are being constructed
to augment Fellowship.

As in any multiuser computing environment with lim-
ited resources, user competition for resources is a sig-
nificant burden. Users want everything they need to
do their job, right now. Unfortunately, other users
may need those resources at the same time. Thus,

c©2008 The Aerospace Corporation.
All trademarks, service marks, and trade names are the
property of their respective owners.

Figure 1: Fellowship Circa February 2007

systems to arbitrate this resource contention are nec-
essary. On Fellowship we have deployed the Sun
Grid Engine[SGE] scheduler which schedules batch
jobs across the nodes.

In the next section we discuss the performance prob-
lems that can occur when sharing resources in a
high performance computing cluster. We then discuss
range of possibilities to address these problems. We
then explain the solutions we are investigating and de-
scribe our experiments with them. We then conclude
with a discussion of potential future work.

2 The Trouble With Sharing

In the early days of computing, time sharing schemes
were devised so that users could share computers.
Early systems were batch oriented and allowed only
a single program at once. Later systems allowed mul-
tiple users to use the system at the same time. To-
day, virtually all operating systems (except for a few
small real-time or embedded operating systems) sup-
port time sharing to allow users to run multiple pro-
grams at once. Depending on the nature of the load
imposed by those programs, time sharing may help
or hinder performance. For instance, if processes are



often blocked waiting for information from storage or
the network, time sharing allows other processes to
run when they can not. On the other hand, if pro-
cesses are performing pure computation, the overhead
of performing context switches between the processes
will impose a performance penalty by consuming cy-
cles the could otherwise have been used for useful com-
putation. A common worst case scenario is running
the system out of main memory and thus being forced
to swap processes out. All systems resources can eas-
ily be consumed moving program state too and from
disk.

In the area of high performance computing (HPC),
time sharing is employed on individual systems by
virtue of the fact that standard operating systems are
generally used. Some some scheduling systems pro-
vide course-grained time sharing (typically on the or-
der of hours or minutes), but fine-grained time sharing
is generally considered too expensive due to the cost of
maintaining synchronization between machines. The
typical mode of operation is that users submit a job
requesting to run one or more processes. The sched-
uler allocates space on one or more systems and typ-
ically provides some assistance in starting up those
processes. The individual processes then run in a
standard time sharing environment on each host until
completion. If each process is assigned its own system,
then application performance will be highly predica-
ble. On the other hand, if resources on these systems
are heavily contended, applications may have unpre-
dictable run time. This is particularly problematic in
parallel applications where work is divided between
processes in a static manner. In that case, the pro-
cess which ends up on the most overloaded system
will hold up the whole computation. While such de-
signs are generally considered a bad idea today, they
remain common in practice.

This sort of unfairness creates difficulties for users, ad-
ministrators, and scheduling systems. Users can not
reliably predict when their job will finish which forces
them to provide inaccurate estimates of job comple-
tion time. This in turn leads to reduced scheduler
efficiency because schedulers can only make optimal
decisions when they know when current processes will
finish and how long queued jobs will run.

3 The Range of Possibilities

A number of possible techniques exist to isolate user
jobs from each other. These options include classic
time sharing based approaches, single application sub-
clusters, and full or partial virtualization.

3.1 Time Sharing and Gang Scheduling

The historical solution to resource sharing–
significantly predating[GE] Unix–is some form of
time sharing. On a cluster this can either be done
per-host or the cluster can be gang scheduled with
the whole cluster dedicated to a particular job at a
given time. Either method has the advantage that
more jobs than can be simultaneously run can work
toward partial results instead of one job blocking the
next entirely. On the down side, switching contexts
between jobs has significant costs.

Time sharing on individual hosts is a standard feature
of all modern operating systems so it can be imple-
mented with no administrator effort. However com-
pletion times in the face of unknown resource con-
tention are highly unpredictable. With parallel jobs
things are worse because in many algorithms, a sin-
gle node can slow down the whole computation. If a
lack of predictability of run times is acceptable, this
approach is very effective at maximizing resource uti-
lization.

Gang scheduling suffers less from contention and un-
predictability since resources are typically wholly ded-
icated to a job during the (usually long) time slice.
Context switching costs are much higher because com-
plex state such as network connections may need to be
created and destroyed. Also, memory resources used
by gang scheduled processes are likely to be pushed
out when they are not scheduled resulting in large
swap in penalties when rescheduled. The largest draw
back of gang scheduling is the general lack of available
implementations. This lack seems to indicate that the
HPC community is not sufficiently interested in the
capability to deal with the complex issues involved in
making it work for arbitrary applications.

3.2 Single Application (Sub-)Clusters

An approach at the opposite end of the spectrum
from time sharing is single application clusters. In
this approach, users are either given a private clus-
ter for a period of time or are allocated clusters on
demand using systems like EmuLab or Sun’s Hedeby
Project[Emulab, Hedeby]. Some labs with annual al-
locations for resources use the first variant.

This allows users complete control over how they run
their jobs. They can let the systems run relatively
idle for maximum predictability or heavily oversub-
scribe the system to get early results from many ex-
periments. Since users are given their own systems,
this allows more complete data security than a con-



ventional multi-user system. On the down side, users
may oversubscribe node to the point of reducing over-
all throughput due to the cost of swapping. There is
also no easy way to harvest under utilized resources
unless users have a mix of job types. Additionally,
this method only works well for relatively large jobs
or projects.

3.3 Virtualization

One method of implementing per-application sub
clusters is to use a virtualization system such
as VMWare, Xen, or VirtualBox[VMWare, Xen,
Virtualbox]. These systems can be deployed in ways
that allow very rapid deployment of system images
which means that virtual clusters can be deployed
rapidly, potentially based on scheduler demand. Be-
cause multiple virtual images can be run on one ma-
chine at the same time, jobs can be given isolated en-
vironments with dependable performance while still
allowing other uses such as cycle scavenging applica-
tions. Other benefits of virtualized systems include
the ability to hide hardware details from applications
and for applications to run in specially tailored op-
erating environments. For example, running with an
uncommon operating system version or configuration.

Virtualization does have a number of downsides which
offset some of these benefits. Because hardware is hid-
den from the virtualized operating system, the OS can
not take full advantage of it. A common example of
this is high performance network devices. New net-
work cards such as those from Neterion support allo-
cating hardware queues to particular virtual images
which can help in this area, but most current devices
do not have such features. Additionally, there is some
CPU, memory, and storage overhead from virtualiza-
tion, CPU overhead is typically in the 5-20% range
where as memory and storage overhead is often up to
100%. There may also be problems with licensing soft-
ware in a virtualized environment, but this situation
is improving over time.

3.4 Virtual Private Servers

The Internet hosting industry has developed an alter-
native to full virtualization which they use to provide
virtual private servers. Their solution is to provide
operating system enhancements which allows parti-
tioning sets of processes off from the main system
and other partitions. Implementations typically start
with the file system virtualization provided by the
chroot() system call and add new features to further
isolate processes and prevent escape from the virtual

root. The FreeBSD jail system is one such implemen-
tation. It restricts processes to a single IP address,
reduces their ability to see processes and other ob-
jects outside a jail, and adds a set of restrictions on
the root user within the jail. Another widely available
implementation of this type of functionality is Solaris
Zones which also includes CPU and memory use re-
strictions. Many hosting companies have developed
their own versions in house.

The main advantage of these techniques is that that
overhead is low compared to full virtualization. Some
ISPs run hundreds or even thousands of virtual pri-
vate servers on a single machine that could only han-
dle tens of Xen or VMWare sessions. Additionally, the
administrator or developer can choose how much they
want to virtualize. For instance, multiple FreeBSD
jails can share the same view of the file system. This
allows processes to be separated and to run on differ-
ent networks, but lets them share files.

The primary down side of this approach that since
virtualization is incomplete, users have ability to affect
each others processes to a greater extent than with full
virtualization. An additional downside compared to
full virtualization is that while virtual environments
can differ, they are much more constrained in how
they do so than with full virtualization. For example
and FreeBSD jail can include a system image of an
older version of FreeBSD (with some limitations) or
from some Linux versions, but there is no support for
Solaris or Windows images.

3.5 Resource Limits or Partitions

All modern Unix-like systems implement some sort of
per-process resource limits. These generally include
current memory use, total CPU time, number of open
files, etc. The goal of these limits it to keep poorly
designed programs or badly behaved users from ex-
hausting system resources. Most cluster schedulers
including Sun Grid Engine use these limits to partially
enforce constraints on jobs. SGE can not rely on the
limits because processes are allowed to create child
process which are subject to the limits independently.
As a result SGE tracks process resource use and keeps
it’s own list of total use for each job to enforce limits
as needed.

Some operating systems provide the additional abil-
ity to limit resources for sets of processes. Irix has
the concept of jobs which are subject to a collective
resource limit[SGI-job]. Similarly, Solaris 9 has a con-
cept of tasks[Sun]. A scheduler could take advantage
of these limits to implement limits on job components.
In general these limits are limits on total use over



time or on resource growth and as such do not pro-
tect against temporary exhaustion of resources such
as CPU cycles or bandwidth to memory, disk, or net-
work accessible resources. This means that they do
not generally protect the predictability of application
performance. Some exceptions such as per-process
bandwidth limits have been demonstrated, but they
are not widely deployed.

In addition to placing limits on resource use, some re-
sources can be partitioned. For instance, most modern
operating systems allow processes and their children
to be tied to one or more CPUs. If this functional-
ity is used to tie each job to a unique set of CPUs,
the ability processes to interfere with each other will
be significantly reduced. SGE once implemented such
an allocation on some platforms, but the support was
primarily implemented on Irix and no longer works.
The biggest downside of this approach is that not all
resources may be easily partitioned and often each re-
source much be partitioned though a different inter-
face.

4 Our Experiments

With out diverse set of user applications, we need an
approach to job isolation that works well for jobs us-
ing between one and several hundred processes with
run times ranging from minutes to days and occasion-
ally weeks. After examining of the pros and cons of
the available techniques, we decided to investigate ap-
proaches based on resource partitioning and virtual
private servers. We felt an approach which deployed
application specific sub-clusters was an attractive ap-
proach from many perspectives, but it is too course
grained without cheap, efficient virtualization. Our
experience has shown that simply letting the OS try
to handle the problem is fairly effective most of the
time and thus we believe that appropriate partitions
will solve many of our problems. On common issue
is poorly designed jobs that consume more than their
allotment of CPU cycles. Another problem is applica-
tions accidentally consuming all of a key resource such
as local disk space. For example, an application was
once filling /tmp on cluster nodes leading to an array
of difficult to diagnose problems such as programs fail-
ing to perform necessary interprocess communications
due to inability to create Unix domain sockets.

We have been experimenting in a few areas of resource
partitioning. These include per-job memory based
temporary files, binding of jobs to sets of CPUs, and
partial file system virtualization using variant sym-
bolic links. We have implemented these on our clus-
ter using a wrapper script around the SGE shepherd

program.

4.1 SGE Shepherd Wrapper

The SGE shepherd program (sge shepherd) is exe-
cuted by the SGE execution daemon (sge execd) to
manage and monitor the execution of the portions of
an SGE job residing on a particular host. It handles
both direct starting of single jobs and remote starting
of components of parallel jobs. It has the task of set-
ting resource limits on processes and tracking, mon-
itoring, and reporting on their resource use through
out the life of the job. We initially planned to mod-
ify the shepherd’s job startup code to implement fur-
ther resource restrictions, but fortunately discovered
that SGE provides the ability to specify an alternate
command that can act as a wrapper around the ac-
tually sge shepherd program. We have implemented
a modular wrapper system in ruby. Using a scripting
language makes development simpler and allows us to
easily leverage both library calls and command line
tools.

The wrapper system allows wrapper modules to be
registered and then have callbacks to set themselves
up, to adjust the shepherd command line, and after
the shepherd exits. This allows changes to be made
such as mounting temporary file systems before exe-
cution and allows programs like env, chroot, or jail
to wrap the sge shepherd program and change it’s
environment directly.

4.2 Memory Backed Temporary Directo-
ries

The first wrapper we implemented extends the SGE
feature of automatically created per-job temporary di-
rectories. By default, the SGE execution daemon cre-
ates a per-job sub-directory in an administrator de-
fined directory and passes the path to the shepherd
as part of its configuration. The shepherd then set
the TMPDIR environmental variable so well designed
applications place any temporary files in this direc-
tory. The directory is removed at the end of the job’s
execution so stray files left by crashes or inadequate
cleanup algorithms are automatically removed. This
feature is very helpful, but we found it does not go far
enough in some cases. The problem is that all these
temporary directories live on the same file system and
thus a single job can run all jobs out of temporary
space.

We have solved this problem with the mdtmpdir wrap-
per that mounts a memory backed file system (specifi-



cally a swap backed md device with UFS) over the top
of the temporary directory. We have made the size a
user requestable resource. We current set a hard limit
on the total allocation size, but intend to replace that
with an SGE load sensor based on swap levels in the
future. The module registers a precmd hook which
creates, formats, and mounts the file system and a
postcmd hook which removes it. As a side benefit,
many applications will see vastly improved temporary
file performance due to the use of memory disks. We
plan to deploy this hook on our cluster soon.

4.3 Variant Symbolic Links

While the memory TMPDIR wrapper solves a number
of problems for us, it is not a complete solution to
the problem of shared temporary space. It is not un-
common for applications, particularly locally written
scripts or older code to hard code /tmp in paths. This
can lead to running out of space in /tmp despite the
existence of TMPDIR. Worse, some applications hard
code full paths including /tmp which can result is cor-
rupt results or bizarre failures if multiple application
instances attempt to use the same paths. To work
around this, we would like to virtualize /tmp for SGE
jobs using variant symbolic links.

Variant symbolic links are a concept dating to at least
Apollo Domain/OS[Wikipedia]. The idea is to make
special symbolic links which contain variables that are
expanded at run time and thus can point to different
places for different processes. We have ported the vari-
ant implementation from DragonFlyBSD[DragonFly]
to FreeBSD with significant modifications. These
modifications include the ability to specify default val-
ues for links with the %{VARIABLE:default-value}
syntax and a more secure precedence order between
the variable scopes In our implementation, system
wide variables override per-process one rather than
the other way around. This means there is no risk of
setuid binaries loading libraries from user controlled
locations due to symlinks.

We intend to replace /tmp with a symlink with like
%{TMPDIR:/var/tmp}. We will then set the per-
process TMPDIR variable in the wrapper script so that
it points to the memory based TMPDIR. That will re-
sult in all processes other than SGE jobs seeing /tmp
and a symlink to /var/tmp, but SGE processes seeing
it as a link to their own private directory. This con-
figuration should fully resolve issues with contention
over /tmp space (I/O bandwidth is another story).

4.4 CPU Set Allocator

With the introduction of CPU sets[FreeBSD-cpuset]
and CPU affinity[FreeBSD-cpuaff] support in
FreeBSD 7.1, it is possible to tie groups of processes
to groups of CPUs. We have leveraged this support
to allocate independent sets of CPUs to each job.

Our CPU set allocation algorithm is a relatively naive
recursive one which does not take cache affinity into
account. The algorithm first attempts to find smallest
available range that the request will fit into. If that
fails, it allocates the largest range and recursively re-
quests an allocation for the remaining request size. We
hope this results in minimal fragmentation over time,
but we have not performed a detailed analysis.

We store CPU set allocations in
/var/run/sge cpuset and lock the file when al-
locating or deallocating ranges. The module registers
a precmd hook which handles range allocation, a
postcmd which deallocates ranges, and a cmdwrapper
which invokes the cpuset(1) utility to restrict the
sge shepherd process and thus it’s children to the
allocated CPU range.

Since the point of the CPU set allocator is to isola-
tor performance impacts, we conducted a experiment
to verify this effect. Our test platform consisted of a
system with dual Intel Xeon E5430 CPUs running at
2.66GHz for a total of 8 cores. The system has 16 GB
of ram and 4 1TB SATA disks neither of which should
not have a measurable impact on benchmark results.
The system is running FreeBSD 7.1-PRERELEASE
amd64 corresponding to subversion revision r182969.
Sun Grid Engine 6.2 is installed. For our benchmark,
we chose an implementation of the nqueens prob-
lem installed from the FreeBSD Ports Collection as
nqueens-1.0. The executable is named qn24b base.
The program finds all possible layouts of N queens
placed on an N ×N chess board where no queen can
capture another. Program performance is almost en-
tirely dependent on integer CPU performance.

Our benchmark runs consisted of running one instance
at a time of “qn24b base 18” via SGE job submis-
sions and using the reported elapsed time as our tim-
ing result. To provide competing load, we ran 0, 7, or
8 instances of “qn24b base 20” in an SGE job which
requested 7 of the 8 slots on the system. Each load
process ran for more than an hour..

A summary of our results is presented in Table 1. The
7 load process case without CPU sets show the ex-
pected results that fully loading the system yields in
small performance degradation and increase in vari-
ability. Likewise the 8 load process case yields a sig-



Table 1: Results of CPU set benchmark runs

Without CPU sets With CPU sets
Baseline 7 Load

Procs
8 Load
Procs

7 Load
Procs

8 Load
Procs

Runs 8 8 17 11 12
Average Run Time (sec)? 345.73 347.32 393.35 346.63 346.74
Standard Deviation 0.21 0.64 14.6 0.05 0.04
Difference from Baseline 0.59 46.63 † †

Margin of Error 0.51 10.81 † †

Percent Difference from Baseline 0.17% 13.45% † †

? Smaller numbers are better. † No difference at 95% confidence.

nificant performance degradation and corresponding
increase in variability. With CPU sets enabled, no
statistically valid difference can be demonstrated be-
tween the baseline and the 7 and 8 load process test
cases and the variability of run times drops apprecia-
bly. These results demonstrate basic validity of our
approach and confirm our hypothesis that CPU sets
will benefit programs even when a node is not over-
loaded.

5 Future Work

A number areas of possible future work exist. Extend-
ing the current SGE shepherd wrapper framework to
add more partitioning would be generally helpful. One
we are particularly interested in is adding a wrapper
to place jobs in individual chroots or jails, possibly
with different user requested OS versions. This could
enable a number of useful things including upgrading
the kernel to take advantage to new performance fea-
tures without exposing the users to disruptive user
land changes. Users could also potentially request
Linux jails for their jobs which would allow easier
deployment of commercial applications. Potentially,
tools such as DTrace could be used to analyze these
jobs, something not possible on Linux due to licensing
compatibility issues.

Other areas worth investigating are the creation of
per-job VLANs for parallel jobs so jobs would be iso-
lated from each other on the network and using the
mandatory access control framework to better isolate
jobs without the use of jails. Using features such
as dummynet to allocate network bandwidth to jobs
might also be interesting. For MPI traffic this would
be fairly easy, but NFS would be more difficult due
to the need to account for the actual process making
the request. Similarly, it would be useful if disk band-
width could be reserved similar to the guaranteed-rate
I/O mechanisms in Irix[SGE-grio].

Also on the FreeBSD side, adding Irix-like job resource
limits or Solaris like tasks would simplify tracking cer-
tain limits in SGE and could provide a useful place to
hang per-job rate limits.

All in all, the use of resource partitioning and tech-
niques from the virtual private server space is prof-
itable space for further exploration in the quest to
make clusters more useful and more manageable. We
intend to continue exploring this area.

References

[Davis] Brooks Davis, Michael AuYeung, J. Matt
Clark, Craig Lee, James Palko, Mark Thomas,
Reflections on Building a High-performance
Computing Cluster Using FreeBSD.
Proceedings, AsiaBSDCon 2007.

[DragonFly] DragonFly BSD http://www.
dragonflybsd.org/about/history.shtml

[FreeBSD-cpuaff] The FreeBSD Project,
cpuset getaffinity(2), FreeBSD System Calls
Manual, http://www.freebsd.org/cgi/man.
cgi?query=cpuset getaffinity&manpath=
FreeBSD+8-current March 29, 2008.

[FreeBSD-cpuset] The FreeBSD Project, cpuset(2),
FreeBSD System Calls Manual,
http://www.freebsd.org/cgi/man.cgi?
query=cpuset&manpath=FreeBSD+8-current
March 29, 2008.

[Emulab] White, Lepreau, Stoller, Ricci,
Guruprasad, Newbold, Hibler, Barb, and
Joglekar, An Integrated Experimental
Environment for Distributed Systems and
Networks, appeared at OSDI 2002, December
2002.

[GE] General Electric Computer Dept. Laboratory,
The Dartmouth Time-Sharing System – A Brief



Description,
http://www.dtss.org/ge dtss.php Sunnyvale
California, 26 March 1965.

[Hedeby] The Hedeby Project
http://hedeby.sunsource.net/

[SGE] Sun Grid Engine Project
http://gridengine.sunsource.net/

[SGI-job] SGI, Inc. job limits(5) IRIX Admin:
Resource Administration
http://techpubs.sgi.com/library/tpl/
cgi-bin/getdoc.cgi?cmd=getdoc&coll=
0650&db=man&fname=5%20job limits

[SGE-grio] SGI, Inc. grio(5) IRIX Admin: Man
Pages http://techpubs.sgi.com/library/
tpl/cgi-bin/getdoc.cgi?cmd=getdoc&coll=
0650&db=man&fname=5%20grio

[Sun] Sun Microsystems. System Administration
Guide: Solaris Containers-Resource
Management and Solaris Zones. 2008.

[Wikipedia] Wikipedia contributors, “Symbolic
link,” Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?
title=Symbolic link&oldid=234623190
(accessed September 19, 2008).

[Virtualbox] Sun xVM VirtualBox http://www.sun.
com/software/products/virtualbox/

[VMWare] VMWare http://vmware.com/

[Xen] Xen Hypervisor http://xen.org/


