
FreeBSD on high performance multi-core
embedded PowerPC systems

Rafał Jaworowski
Semihalf, The FreeBSD Project

raj@{semihalf.com, freebsd.org}

Abstract

This paper describes low level design and
implementation of the FreeBSD operating sys-
tem port for the MPC8572 system-on-chip de-
vice, a high-end member of the Freescale Pow-
erQUICC III family. It is a modern dual
core system, compliant with Book-E definition
of the PowerPC architecture, which features
a number of peripherals integrated on a single
silicon die.

The primary focus of this paper is describ-
ing how the multi-core operation was brought
forward and full SMP capabilities achieved,
but other major components developed in the
course of this project, device drivers in partic-
ular, are also covered.

1 Introduction

PowerPC is an instruction-set architec-
ture definition, originally developed by Apple,
IBM and Motorola1, based on IBM’s POWER
technology (RS/6000). It is now maintained
by the Power.org group, a not for profit or-
ganization, which is shepherding the develop-
ment of the so called Power Architecture (im-
plemented as Cell, PowerPC and POWER pro-
cessors), maintaining and releasing a unified
instruction-set specification and reference plat-
form definitions. All major Power Architecture
silicon vendors participate in the Power.org.

Although PowerPC began as a modified
subset of the POWER definition, contemporary

1throughout this paper it is called AIM, or the tra-
ditional PowerPC definition

processors from this line are fully compatible
with PowerPC instruction set; all these varia-
tions are covered by the term Power Architec-
ture.

With multiple vendors and supporters
(AMCC, Freescale, IBM, Xilinx), Power Ar-
chitecture is a widespread and viable processor
design, used from embedded systems, through
servers to supercomputers and gaming (all the
most popular game consoles are based on the
Power Architecture technology). Since this pa-
per is mostly concerned about PowerPC, all fur-
ther discussion refers to this aspect of the Power
Architecture unless explicitly stated otherwise.

From the high level technical perspective
PowerPC can be described by the following
highlights:

• RISC-like (load-store) architecture

• superscalar

• 32- and 64-bit

• historically big endian (contemporary sys-
tems can switch between big and little en-
dian order)

Book-E is the more recent variation of the
traditional PowerPC architecture definition,
supposed to suit particular needs of the embed-
ded applications, but keeping binary compati-
bility with the traditional model at the user in-
struction set level (applications compatibility)
[EREF, EREFRM].

There is a number of important differ-
ences between Book-E and the traditional spec-



ifications below the application level, which
greatly influence how the operating system
must be implemented at the machine-specific
layer. Among the most distinctive are the fol-
lowing differences [AN2490]:

• Book-E has more flexible approach to
memory management (no longer the seg-
mented mode known from AIM; instead
there is a page-based memory system with
multiple variable-sized pages, pure transla-
tion lookaside buffers (TLBs) mechanism.
Dedicated registers and machine instruc-
tions for handling memory management
unit (MMU). The differences in memory
management area are by far the most
prominent and making Book-E appear like
a completely different CPU from this per-
spective.

• The exceptions model is extended when
compared to AIM, additional classes of ex-
ceptions are introduced, accompanied by
dedicated machine instructions for servic-
ing them.

• Interrupt vector area in Book-E is no
longer at a predefined location, handling
routines can be more flexibly placed in
memory.

It is important to note that Book-E spec-
ification leaves some lowest-level items to the
discretion of particular vendor’s implementa-
tion. For example, even though the MMU
translation logic is precisely defined, the speci-
fication does not impose limits on the number
of TLB entries, or details on how exactly to
retrieve or store a given TLB entry contents.

The work described in this paper covers
FreeBSD support for the MPC8572 system-on-
chip (SOC) device, which is built around the
dual-core E500, a Book-E compliant proces-
sor implementation by Freescale Semiconduc-
tor, Inc. [E500CORERM, EREF, EREFRM,
MPC8572ERM]

At the time this development has begun,
initial support for the E500 class machines was

available in the public FreeBSD/powerpc repos-
itory as the outcome of a porting effort com-
pleted previously for the single-core E500 im-
plementation [BSDCAN07]. This served as
the main starting point for further work, but
also some important parts of the common
FreeBSD/powerpc code were leveraged in this
undertaking.

The most important elements, which were
used as a base for further extensions and re-
work, include:

• Booting environment, including firmware
support library for PowerPC.

• Kernel locore initialization routines.

• Low level MMU support layer (pmap2 in-
terface) for E500.

• On-chip peripheral devices model.

• Basic driver for the integrated Ethernet
controller.

• Preliminary support for inter-processor in-
terrupts (IPI).

2 Porting

The outline of porting the FreeBSD oper-
ating system to a new platform includes the fol-
lowing major steps that have to be completed:

• Build environment. It is the first elemen-
tary requirement before any real work in
the kernel can actually happen: we need
to be able to produce proper machine code
for the target platform. This may require
changes to the compiler, linker, assembler
and other utilities, or even the complete
port of the build tools for a given architec-
ture, if not already supported.

• Initial, stripped-down kernel build. At
first, we will be trying to run something
very minimal and it is usually best to elim-
inate as much code as possible.

2machine-specific VM layer, originally derived from
Mach implementation and used by all BSD family

2



• Bootstrapping. Once the minimal kernel
is built, there has to be a way to load the
image (ELF or pure binary) into memory
and pass control to its entry point. In
order to minimize dependencies and sim-
plify development set-up, it is usually pre-
ferred at the beginning to skip using the
FreeBSD last stage loader, and execute the
kernel directly. Details of this process how-
ever are much dependent on the underlying
firmware’s specifics and should be consid-
ered in a particular context.

• Locore kernel path. Entry point to the ker-
nel, low level routines for CPU initializa-
tion have to be crafted in assembly lan-
guage of the given machine.

• Rudimentary operation of the system.
This covers, but is not limited to, get-
ting to work the following elements: con-
sole, VM/pmap, time counter, excep-
tions/interrupts handling, in-kernel de-
bugger (DDB/KDB). Only equipped with
such basic instrumentation can we move on
towards booting the kernel all the way up
through machine-independent layers, until
the root file system is mounted and init
process executed, to finally reach a single
user shell prompt.

It should be apparent the above is not a
complete or exhaustive list, but only a bird’s
eye view on the overall scope of work involved
into porting the kernel to a new platform.

The porting effort foremost concern is
hardware-dependent layer, so using all available
debugging facilities is highly recommended,
specially the hardware assisted techniques
(JTAG tools) are of particular help during early
development phases, when no console output is
available.

Subsections that follow discuss more de-
tails of selected porting stages in the course of
the MPC8572 system bring-up.

2.1 Baseline code

The starting point for this development
was publicly available source code of the

FreeBSD 8-CURRENT branch as of March
2008 timeframe. During the porting duration
it was a regular practice to re-sync with up-
to-date baseline: the porting process can take
longer time to complete, and CURRENT is the
development branch, dynamically changing, so
it is best not to let the porting work in progress
diverge too far from the baseline.

2.2 Build environment

In case of the E500 machines, existing
build environment could be fully leveraged.
The tool chain bundled with the base FreeBSD
(GNU binutils 2.15 and gcc 4.2.1) has had the
ability to produce E500 specific machine code
for some time already; these tools were previ-
ously used with success, so no specific exten-
sions or changes were required in the build tools
area for the MPC8572 port.

One note regarding binaries for the
FreeBSD E500 support is that the traditional
PowerPC ABI (Application Binary Interface) is
used [PPCABI], and not the EABI (Embedded
ABI), whose features and modifications of the
basic model were not particularly required or
beneficial for this development.

2.3 Bootstrap

The primary startup environment for the
MPC8572 system is U-Boot firmware, an open
source boot loader, widely adopted in embed-
ded applications, specially on PowerPC-based
systems. U-Boot’s role is initialization of the
hardware and providing minimal conditions, so
that loading an operating system kernel into
main memory and passing control to it is pos-
sible. U-Boot firmware development was not
strict part of this porting effort: it was deliv-
ered by the hardware vendor and only slightly
adjusted.

FreeBSD regular bootstrap process com-
prises a variable number of stages, depend-
ing on a given platform, but overall there is
some form of initial execution performed by
firmware (like BIOS or U-Boot), which in turn
retrieves and runs some FreeBSD-specific boot
code (early stage boot blocks, last stage loader),

3



which loads and executes the kernel.

With U-Boot based embedded platforms,
FreeBSD last stage boot loader is run on top of
U-Boot as the so called standalone application,
it brings in the ELF kernel file to memory and
runs it.

The integration between the FreeBSD last
stage boot loader and the underlying U-Boot
firmware was also not strict part of this port-
ing effort, as all elements3 were developed pre-
viously during the single-core E500 porting
project [BSDCAN07]. They proved stable and
ready for reuse, with almost no work other than
testing and verification.

2.4 Minimal kernel operation

Preliminary steps described so far would
let us build and load a skeleton kernel i.e. it
would be formally recognized as a kernel image,
but it is only a container, for which the proper
contents need to be provided. There is a great
number of conditions that need to be fulfilled
before the first tangible signs of its life can be
observed, but among the most important are
the following:

• Early kernel initialization routine.

• Exceptions and interrupts handling (in
particular address translation exceptions).

• MMU support layer: pmap. For Book-E
class machines this is a critical area, as the
architecture definition does not allow op-
eration of the system with MMU disabled,
i.e. MMU is always turned on by design
and cannot be switched off.

• Local bus access methods so that CPU is
able to issue elementary read/write opera-
tions on the bus in appropriate byte order.

• DMA back end layer.

• Integrated peripherals abstraction and in-
dividual device drivers.

3the U-Boot side API and accompanying support li-
brary for the FreeBSD loader

The first three items from the above list
are discussed in greater details in their re-
spective, dedicated sections; other elements are
summarized below.

For uniform4 access to the local bus,
FreeBSD kernel relies on the so called bus
space layer, a concept originally introduced in
NetBSD, which defines an API exporting bus
accessing methods. The foremost consumer
of this abstraction are device drivers. Each
new architecture or variation of the CPU (if
significantly different in this respect) has to
provide its own machine-specific implementa-
tion of these methods. In case of E500, the
already implemented bus space methods for
FreeBSD/powerpc were used. An extension
developed during this port was adding 64-bit
width accessors, which were required for the in-
tegrated security engine driver to work.

Similar situation is with DMA handling,
as there is an abstraction layer called bus dma,
also derived from NetBSD, and of analogous
purpose that the bus space serves. It defines an
abstract API for DMA-related operations for
the rest of the kernel, with low level methods
implemented according to a given architecture’s
specifics. In case of E500 and the MPC8572
system-on-chip, the existing FreeBSD/powerpc
bus dma layer could be used without exten-
sions. Like most of PowerPC systems, coher-
ence between DMA, memory and data cache
is maintained with hardware help, and there is
no need for software assistance (explicit data
syncing is not required).

Contemporary system-on-chip devices of-
ten integrate a fair number of peripherals in
one chip, which is also true for the MPC8572
SOC. In order to be managed and recognized
by the kernel, all integrated peripherals need
to be modeled into an abstract tree repre-
sentation, according to the FreeBSD newbus
paradigm, an object-oriented description of de-
vices hierarchy and dependencies. For this port
an existing ocpbus5 code was used as a start-
ing point, and slightly extended. The ocpbus

4as seen from higher levels of the kernel
5on-chip peripherals bus

4



driver manages assignment of the built-in hard-
ware resources (like the memory-mapped regis-
ters ranges, interrupts) in situations where no
heavy weight firmware (like Open Firmware or
EFI) is present. In case of U-Boot, the envi-
ronment is simplistic and there is no feedback
from firmware regarding devices’ resources as-
signments available to the kernel, and therefore
it needs to do its own management.

2.5 Portability summary

FreeBSD in general appears as a portable
software. Thanks to the layered approach and
abstractions (bus space, bus dma, newbus hier-
archy, pmap), the machine-specific elements are
mostly well contained. From this perspective
porting work can be planned and then driven
by tracking the completion of these interfaces’
implementation.

A relatively high degree of reuse of the
existing Book-E work was possible, which is
natural as the MPC8572 system described in
this paper is a more powerful successor within
the family, with essentially the same under-
lying architecture definition and sharing most
peripheral devices. Notwithstanding the hard-
ware similarities, it should be noted the code
from previous port proved scalable and well de-
signed. Given the differences between older and
newer chips, the code stood a good base from
the very beginning: with only minor updates
and corrections was the existing E500 kernel
code able to start executing on the first core of
the MPC8572. Much more work was required
to bring multiprocessing operation, and this is
subject of closer analysis that follows.

3 Multi-core operation bring-up

Before getting to the detailed discussion
on bringing full multi-core capabilities, we need
to introduce some basic nomenclature.

First, there is the notion of symmetric
multi-processor (SMP) architecture, in which
all processing units in the system share the
memory space and all run a single kernel im-
age instance. Programs, including kernel, have
to be explicitly made aware about SMP to

take advantage of the parallelism offered by
such system. One of alternative approaches
is asymmetric multi-processor (AMP) architec-
ture, where each processing unit runs its own
instance of the kernel image and has dedi-
cated (separate) memory. With AMP, individ-
ual CPUs can as well run completely different
operating systems.

In the context of this work we are only
concerned and interested in the SMP approach,
other schemes like AMP and hybrid solutions
are not considered or relevant for further dis-
cussion.

Within the SMP processors group there
always is one to first start executing the ker-
nel code and bring it to the state when all
other CPUs are awakened and allowed to run.
These are, respectively, the bootstrap proces-
sor (BSP) and application processors (AP). Be-
sides BSP’s special role during initialization
and shutdown phases, the BSP and APs are
equal from the consumer (applications) point
of view: threads are scheduled on all CPUs in
the same way, regardless of their BSP/AP char-
acter.

In the MPC8572 dual-core system, the
BSP is typically core0, and AP is core1 ; this
will be the convention used further on.

It is also important to note that each core
is equipped with its own memory management
unit (MMU) instance, own L1 caches and sep-
arate set of other internal resources. The com-
pound, including the core itself is referred to
as the core complex. Dual-core MPC8572 has
therefore two core complexes.

3.1 Initialization

When the system is powered up, the CPU
fetches its first instructions to execute from
some well defined location. In modern em-
bedded processors like the MPC8572, there’s a
number of options a designer can choose for the
system to boot from, e.g. ROM (FLASH), PCI,
I2C, but we will only consider the most typical
i.e. FLASH. Note that Book-E class processors
do not follow the traditional PowerPC behavior

5



upon reset exception: there is no reset vector as
known from AIM, and the CPU just fetches an
instruction from some established address upon
reset event.

These out-of-reset steps are the primary
responsibility of the code executed at power-
up, i.e. the firmware. In general, only core0
of MPC8572 is initially active and executes
firmware code. The assumption our SMP ker-
nel takes is that APs are not activated by the
firmware i.e. they will only be awakened by the
BSP at appropriate time.

3.2 The way of the bootstrap processor

Boot loader running on the BSP puts ker-
nel code and data into memory and passes con-
trol to the entry point. The initial routine
that starts executing is hand crafted in Pow-
erPC assembly language, and its purpose is
low level initialization of the CPU. The code
makes certain assumptions about preparation
steps which have to be done by the underlying
boot loader, before it passes control: memory
starts at physical address 0, kernel is loaded
at 16-MByte boundary etc. The outline of
this kernel initialization code is the following
(sys/powerpc/booke/locore.S):

• Enable machine-specific features in the
CPU (set HID6 registers).

• Initialize the MMU so that kernel is run-
ning with virtual addresses.

• Set up stack.

• Initialize exceptions vector offsets.

• Jump to e500_init(), machine-specific
higher-level initialization.

• Jump to machine-independent kernel ini-
tialization routine, mi_startup(), which
does not return.

One particular feature of the Book-E specifi-
cation, with far fetching consequences, is that
MMU is always enabled on such processors.

6hardware-implementation dependent

In other words, there must be always a valid
translation in the TLB for the code executed
or data accessed. The TLB translation error
exceptions cannot be masked and will always
occur upon fetch, load or store operation at a
non-translated address.

For this reason, the kernel initialization
code which prepares MMU for further work,
needs to be very careful with cleaning up un-
desired translations (left by the firmware): it
must not invalidate an entry translating the
initialization code itself. To achieve this, a spe-
cial technique is deployed, with flipping address
spaces and setting temporary entries, until the
MMU is fully reinitialized, with low level ker-
nel code remaining available (in the translation
sense) all of the time.

After the machine-dependent initializa-
tion code is finished and the kernel is about to
commence the machine-independent part, the
CPU and kernel state can be summarized as
follows:

• Kernel text, data, possibly debug symbols,
internal structures (kernel page tables and
others) are covered by TLB translations.

• SOC registers block for the on-chip periph-
erals is mapped in the virtual space and
translated by TLB.

• All other TLB resources are cleared and
not used.

• Decrementer7 is configured, so the kernel
can reliably count delays and do other time
counting, periodic actions etc.

• L1 and L2 caches are enabled.

In case of a uniprocessor system, this
mostly concludes the low level initialization
of the kernel, but in multiple processor en-
vironments the remaining CPUs still need to
initialize and become fully available. While
traversing machine-independent boot sequence,
the BSP reaches the last final stage when the
FreeBSD kernel kicks the scheduler and goes up

7PowerPC internal time counter

6



into full operation. In SMP system, just before
this very last stage APs are awakened.

3.3 Unleashing secondary processor

In general there can be a number of APs,
but in the context of this development we
only consider one AP (core1), besides the BSP
(core0). Overall, AP set-up procedure is very
similar to what the BSP does, although some
kernel preparation which has already been com-
pleted by the BSP, can be taken for granted.

When MPC8572 powers up, individual
cores can be active or non-active. The latter
state is referred to as the holdoff mode, where
the given core is prevented from booting. Deci-
sion whether a core is activated or not depends
on the system configuration sampled at reset
time [AN3542]. For this development it is as-
sumed that only core0 is active (boots the sys-
tem), and core1 is in holdoff mode until explic-
itly taken out of this state. Such is the default
U-Boot behavior.

Another important aspect when consider-
ing system start-up is the boot page translation,
which is strictly connected with how the E500
core starts after reset. It begins with fetching
and execution of the last word8 of the address
space i.e. at effective address 0xFFFF_FFFC. In
order for this to succeed there needs to be a
valid TLB translation for the page, in which
this initially executed word is located. The
default boot page translation after power-up
is a 1:1 mapping of the last 4-KByte page
of the address space i.e. effective addresses
0xFFFF_F000-0xFFFF_FFFF translated to the
same physical range. In typical scenario the
first instruction to execute at 0xFFFF_FFFC is a
branch to the beginning of the boot page, where
more initialization code within this 4-KByte
area can be found. Figure 1 illustrates this con-
cept.

The boot page topic was not brought for-
ward at the BSP start-up discussion only be-
cause it is firmware responsibility to supply
boot page when the core0 starts. The AP on
the other hand remains in holdoff mode and its

832-bit width

Figure 1: Boot page

initialization is supervised entirely by the ker-
nel code (running on the BSP), so we need to
take care about boot page contents for core1.
Note there can only be one boot page trans-
lation in the system at a time (shared by all
cores), but once the BSP is up and running it
never needs or uses it again.

Based on this is the procedure of bringing
the AP out of holdoff mode (steps are executed
by the BSP):

• Adjust the boot page translation so that it
points to a physical page in memory con-
taining code we want the AP to execute.

• Make the AP run.

The code we “redirect” the AP to boot
from has to be crafted in a similar way as the
kernel entry point for the BSP. Indeed, its lay-
out is quite similar (note each core complex has
own instance of certain units and they need to
be initialized separately by the AP):

• Enable machine-specific features in the
CPU (set HID registers).

• Initialize the MMU so that kernel is run-
ning with virtual addresses.

7



• Set up stack.

• Initialize exceptions vector offsets.

• Assign per-CPU structures and resources.

• Jump to pmap_bootstrap_ap(), finalize
MMU set-up.

• Call cpudep_ap_bootstrap(), machine-
specific SMP initialization.

• Call machdep_ap_bootstrap(), machine-
independent SMP initialization, which
does not return.

At the time the AP performs this last
action, its TLB contains some critical entries
copied from the BSP settings: translations for
kernel and the integrated peripherals registers
range. This way both CPUs have the same view
of the MPC8572 system.

The last stage of the AP bootstrap and
final SMP initialization is driven by the BSP
(scenario from the AP perspective):

• Busy wait until the “go” command arrives
from the BSP.

• Initialize decrementer and time base regis-
ters with BSP-provided settings, so that
both cores have the same view of time
counting.

• Enable external interrupts.

• Go into scheduling, accept work.

This concludes initialization of the FreeBSD
SMP kernel running on the MPC8572.

3.4 Hardware assistance for multi-
processing

When considering SMP kernel, there
must be some basic hardware facilities available
for the operating system to build its infrastruc-
ture on.

The primary requirement, even for uni-
processor systems, are atomic operations, and

the architecture has to provide low level prim-
itives, which are used to build more complex
tools needed in the kernel. PowerPC has al-
ways offered elementary mechanisms for this
purpose, and in case of this porting work the
existing atomic operations implementation for
the FreeBSD/powerpc were used [AN3441].

One of the more serious problems an SMP
system designer faces, are data coherency is-
sues, and there are a couple of ways they could
be resolved [SCHIMMEL]. The best situation
from the operating system perspective is when
there is hardware-enforced coherency in place.
This is the case of MPC8572, which imple-
ments mechanisms that help put off the data
coherency maintenance burden from the kernel
[AN3544].

The hardware coherency module allows
on-chip caches (L1 and L2) to snoop on local
bus (CCB9) for transfers affecting potentially
cached locations. From the other end, bus mas-
ters (DMA engines) must be configured to ad-
vise the cache logic when modifying cacheable
locations.

Additional mechanism which allows to
keep both cores coherent with regards to main
memory contents is the M-bit (memory coher-
ence) in the page translation attributes. When
set for a page, information is broadcast to the
other processor whenever the local CPU mod-
ifies data in this page. The cache logic of the
other processor can take appropriate action in
case the affected contents were cached there.

Besides data coherency enforcement the
following elements add to MPC8572 SMP hard-
ware assistance facitlities:

• Cache invalidation instructions broadcast.

• TLB invalidation instructions broadcast.

• Integrated interrupt controller10 with
multi-processor support i.e. Inter Proces-
sor Interrupts (IPI).

9Core complex bus, internal bus connecting both
cores and their resources (MMU, caches)

10OpenPIC compliant implementation

8



Note there is no hardware-enforced co-
herency for the instruction cache; in case
cacheable memory locations containing exe-
cutable code are altered, there needs to hap-
pen explicit synchronization of the instruction
cache to avoid incoherency.

4 Memory management challenges

FreeBSD machine-specific layer handling
the MMU is called pmap, which provides an
API for the machine-indpendent VM layer and
other kernel subsystems. For the Book-E
class of processors, a new pmap module
was developed at the time of the single-core
MPC85xx port [BSDCAN07]. MMU in dual-
core MPC8572 is the same design, with only mi-
nor quantitative differences like the number of
TLB entries or additional page sizes supported.

E500 core complex consists of two MMU
sub-modules (L1 and L2), but only L2 is con-
trolled by software; L1 is managed entirely in
hardware and hence pmap does not have to be
aware about its existence. From the program-
ming perspective the L2 MMU is built of two
separate translation look-aside buffers:

• TLB0, set-associative, fixed 4-KByte page
size, 256/512 entries (depending on the
core revision).

• TLB1, fully-associative, pages of vari-
able size (4-KByte–1-GByte, or 4-KByte–
4-GByte, depending on the core revision),
16 entries.

The Book-E pmap implementation uses
TLB1 for the permanent translations e.g. ker-
nel code, data and other important areas (pe-
ripherals registers, decode windows) are cov-
ered by the TLB1 translations. As the name
suggests, these entries do not change during
system activity. For dynamic translations pur-
poses (regular translations, subject to recy-
cling, like the user processes’ pages) the TLB0
is used.

Because the Book-E specification is very
flexible about how the page tables are laid
out in software, the system programmer is free

to choose any model. The FreeBSD Book-E
pmap implementation uses the most natural
approach, a 2-level forward translation table,
which is illustrated11 at figure 2.

Figure 2: Page tables layout

The pmap module originally implemented
for single-core MPC85xx systems, was re-
factored and extended before requirements of
the SMP environment were met, and both cores
of the MPC8572 could run safely in parallel
with the shared code, data and other resources,
without corruption. Among the most challeng-
ing problems faced during MP-safe conversion
of the Book-E pmap were the following:

• Parallel and nested TLB miss exceptions
and page faults (deadlock avoidance).

• TLB invalidations synchronization be-
tween CPUs.

• MP-safe page tables contents updating.

In order to satisfy the SMP reality the
pmap module was extended and adapted, but
it should be noted that its overall design was
not changed, and proved flexible enough to ac-
commodate to the new conditions. TLB0 han-
dling was simplified and made more robust (re-
dundant keeping of the TLB0 state was elim-
inated). TLB miss exceptions handlers were
extended, so that certain steps while servicing
the miss are truly atomic.

11PTE acronym means page table entry

9



For local core TLB invalidations a
new performance-optimized (assembly) routine
was introduced, and system-wide invalidations
(broadcast within coherency domain), are pro-
tected by a dedicated spin lock, as there can be
only one system-wide TLB invalidation broad-
cast on the bus at a time.

Page table management logic was also op-
timized and lock-protected, so that updating
sequences are atomic across CPUs. In order
for this to happen a dedicated TLB miss spin
lock was introduced, which prevents servicing
TLB miss exceptions by the other CPU, while
page table contents are being updated by the
current processor.

5 Beyond core kernel—integrated pe-
ripherals

Above basic kernel support a number of
device drivers for the on-chip peripherals were
developed in the course of this project. The
FreeBSD kernel infrastructure for managing de-
vice drivers is an object-oriented framework
(newbus), and all MPC8572 peripherals drivers
described in this section are compliant with this
model. Figure 3 illustrates the concept.

Figure 3: Device drivers hierarchy

5.1 Enhanced Three-Speed Ethernet
Controller (eTSEC)

TSEC is the 1-Gbit Ethernet engine found
in various Freescale parts and the MPC8572 has
an enhanced version of the controller. An exist-
ing device driver, originally developed for the
single-core MPC85xx port [BSDCAN07], was

extended and adapted to make use of the ad-
vanced functionality offered by the newer hard-
ware. Additional features of the driver intro-
duced during this porting work:

• polling

• interrupt coalescing

• VLAN tagging

• hardware checksum calculation

• jumbo frames

Fine grained locking was also provided as a pre-
requisite for MP-safe operation.

5.2 Pattern Matching Engine (PME)

PME is a hardware accelerator for match-
ing patterns, specified as regular expressions, in
data going through the system bus. Among its
main applications is network packets inspection
(content filtering), which can be done in real-
time and with high performance. The engine
also includes a decompression module, so that
inspected data can be unpacked on the fly if
required.

The device driver for PME was written
from scratch, with fine grained locking for MP-
safe operation. It can be compiled as a kernel
dynamic module.

5.3 Security Engine (SEC)

The device driver for the crypto acceler-
ator was written from scratch. It is compliant
with the open crypto (OCF) framework, and
supports versions 2.0 and 3.0 of the engine. The
following algorithms and schemes are currently
supported:

• 3DES, AES, DES

• MD5, SHA1, SHA256, SHA384, SHA512.

The driver is fine grained locked for MP-safe
operation and can be compiled as a kernel dy-
namic module.

10



5.4 PCI-Express bridge

The existing PCI driver, developed pre-
viously for the single-core MPC85xx, was ex-
tended to also recognize and set up the PCI-
Express bridge found in MPC8572.

5.5 Integrated DMA Engine (IDMA)

This general purpose DMA engine can be
used for offloading CPU when transferring data
by different bus masters. Various methods are
available for specification of the data (via de-
scriptors or explicitly), and there is more than
one mode of operation (single transfers, chained
mode).

The driver for IDMA was written from
scratch, only basic mode of operation (direct)
is supported for the moment. As part of this
development a sample user-space application,
demonstrating basic IDMA operation was also
written.

5.6 I2C controller

Device driver for the I2C integrated con-
troller was written from scratch. As an add-on
the the main controller driver, a helper i2c tool
was also developed to help diagnose and inspect
slave devices on the I2C bus.

6 Future development

Even though FreeBSD for the MPC85xx
systems is in a decent shape, there is a num-
ber of areas which would benefit from improve-
ments and new development. Some more inter-
esting topics are highlighted below:

• Currently a single virtual address space is
used (AS = 0), where the kernel is mapped
into the higher 1/4th of the 32-bit address
space, but the Book-E specification allows
for more elaborate set-ups. For example,
the kernel could reside in its own 32-bit
address space, separate from the user pro-
cess (which could then also utilize the full
4-GByte address space).

• The E500 core has 36-bit physical ad-
dress space, but current FreeBSD support

is oblivious to this potential. In order
for the kernel to make us of it (very big
RAM, more I/O devices etc.), there would
be needed a feature somewhat equivalent
to the PAE (Physical Address Extension)
support, known from the FreeBSD/i386.

• MPC8572 features an integrated Table
Lookup Unit (TLU), an engine acceler-
ating complex table lookups with hard-
ware assistance. Among applications that
would benefit from the [missing] TLU
driver are firewall (rules lookup), database
and similar.

• The pattern matching (PME) driver has
to be integrated with the FreeBSD firewall
software (ipfw, pf ), so that the packet con-
tent analysis capabilities are utilized by the
kernel.

• eTSEC Ethernet controller has built-in
support for the IEEE 1588 Precision Time
Protocol (PTP), but the driver code needs
to be extended in order to use it. This
task could be generalized towards develop-
ing a generic PTP infrastructure for the
FreeBSD kernel, to which capable network
interfaces would plug in, and the PTP han-
dling would be a generic code.

• The security engine (SEC) driver should
be extended with the RC4 stream cipher
and RNG support.

• The general purpose DMA engine driver
is currently only able to demo a basic op-
eration of the device, but cannot be used
by any real consumers. A bigger project
around this would be to bring up a generic
DMA API to the FreeBSD kernel and user-
land, which would utilize such all-purpose
DMA engines instead of CPU calling copy
routines. This too, should be a scalable
framework with machine-dependent back-
end plugged into and a generic layer.

11



7 Acknowledgments

I would like to thank the following people:

Alan L. Cox (The FreeBSD Project), for
conversations on pmap interface in the SMP
context.

Mark J. Douglas (Freescale), for all the
help, support and assistance.

Marcel Moolenaar (The FreeBSD
Project), for groundwork on SMP for the AIM
PowerPC and IPI support implementation in
the OpenPIC driver.

Grzegorz Bernacki, Rafał Czubak, Michał
Hajduk, Jan Sięka, Piotr Zięcik (all Semihalf),
for all the great work on this project.

Work on this paper was sponsored by Semihalf.

8 Availability

The code described in this paper is, or will
soon be, available from the FreeBSD Project
Subversion repository, 8-CURRENT (HEAD)
branch. It is expected to be part of the
FreeBSD 8.0-RELEASE.

References

[AN2490] Jerry Young, Freescale Semiconduc-
tor, Inc., MPC603e and e500 Register
Model Comparison, AN2490/D Rev. 0,
7/2003

[AN2665] Freescale Semiconductor, Inc., e500
Software Optimization Guide (eSOG),
AN2665 Rev. 0, 04/2005

[AN3441] Freescale Semiconductor, Inc., Co-
herency and Synchronization Require-
ments for PowerQUICCTM III, AN3441
Rev. 1, 12/2007

[AN3542] Ted Peters, Freescale Semiconduc-
tor, Inc., SMP Boot Process for Dual E500
Cores, AN3542 Rev. 0, 1/2008

[AN3544] Gary Segal and David Smith,
Freescale Semiconductor, Inc.,
PowerQUICCTMData Cache Coherency,
AN3554 Rev. 0, 12/2007

[BSDCAN07] Rafał Jaworowski, Embedding
FreeBSD/powerpc, BSDCan 2007, Ottawa

[E500CORERM] Freescale Semiconductor,
Inc., PowerPCTMe500 Core Family
Reference Manual, Rev. 1, 4/2005

[EREF] Freescale Semiconductor, Inc., EREF:
A Reference for Freescale Book E and the
e500 Core, Rev. 2.0, 01/2004

[EREFRM] Freescale Semiconductor, Inc.,
EREF: A Programmer’s Reference Man-
ual for Freescale Embedded Processors,
Rev. 1, 12/2007

[MPC8572ERM] Freescale Semiconductor,
Inc., MPC8572E PowerQUICCTM III In-
tegrated Host Processor Family Reference
Manual, Rev. 2, 05/2008,

[PPCABI] Sun Microsystems and IBM, Sys-
tem V Application Binary Interface. Pow-
erPC Processor Supplement, 09/1995

[SCHIMMEL] Curt Schimmel, UNIX Sys-
tems for Modern Architectures: Symmet-
ric Multiprocessing and Caching for Ker-
nel Programmers, Addison-Wesley Profes-
sional Computing Series, 1994

[VAHALIA] Uresh Vahalia, UNIX Internals:
The New Frontiers, Prentice Hall, 1995

12


