
Crypto Acceleration on FreeBSD

Philip Paeps
philip@FreeBSD.org

AsiaBSDCon 2009 — Tokyo, Japan
March 2009

Abstract

As more and more services on the internet become
cryptographically secured, the load of cryptography
on systems becomes heavier and heavier. Many
of the embedded communications processors sup-
ported by FreeBSD provide acceleration for crypto-
graphic operations in silicon and various manufac-
turers build hardware for accelerating secure web
traffic and IPsec VPN tunnels.

In the FreeBSD kernel, acceleration hardware is
supported by the opencrypto framework. This pa-
per presents an overview of the framework and ex-
plains the advantages and pitfalls of using hardware
acceleration on various workloads and system con-
figurations.

1 The opencrypto Framework

1.1 Overview

Originally written by Angelos D. Keromytis for
OpenBSD, the opencrypto framework was ported
to FreeBSD by Sam Leffler in 2002. The frame-
work provides a consistent interface to hardware
and software cryptography methods inside the ker-
nel and gives userspace access to hardware cryptog-
raphy through a /dev/crypto device node.

At the time of this writing, the FreeBSD ker-
nel includes device drivers to support various hard-
ware cryptography devices manufactured by AMD,
Broadcom (Bluesteel), Hifn, SafeNet and VIA.
While it is possible for third parties to provide out-
of-tree device drivers for different hardware, the au-
thor is not aware of any such drivers at this time.

In addition to the various hardware device
drivers, the FreeBSD kernel also includes a generic

software driver which is used when no hardware is
available for a given algorithm. The software driver
supports a long list of commonly used algorithms.

Inside the kernel, opencrypto is currently used
by IPsec, GELI and ZFS. In userspace, an
OpenSSL engine using /dev/crypto can be used
to (potentially) accelerate applications linked with
libcrypto. For performance reasons (q.v.) how-
ever, this engine is not enabled by default.

1.2 Architecture

The opencrypto framework provides a “driver” in-
terface on the one hand and a “consumer” inter-
face on the other. The framework uses sessions to
cache information and settings in drivers so initial-
ization is not required for every request. A session-
less mode of operation is also available for keying
operations.

Device drivers—either hardware device drivers or
software drivers—register the algorithms they sup-
port with the framework and provide a set of call-
back functions for the framework to use for man-
aging sessions and dispatching cryptographic oper-
ations.

For regular cryptographic operations, consumers
create a session describing the kind of operations
they would like to perform, the keys to be used and
possibly an initialization vector. Multiple crypto-
graphic operations can be chained in a single ses-
sion. Consumers then create requests describing
the data to be operated on and refering to the ses-
sion to be used.

Sessionless keying operations operate directly on
input and output parameters. Consumers describe
the input they provide and the output they expect
when they dispatch requests.

1



Since consumers are not necessarily associated
with a process, the framework may not sleep(9)
anywhere. For this reason, both the session-based
and the sessionless modes of operation are com-
pletely asynchronous and consumers have to pro-
vide functions to be called when requests complete.

2 Hardware Acceleration

2.1 Principles of Operation

Cryptographic operations tend to be computation-
ally intensive. On slower hardware, they can keep
a system busy for significant amounts of time. Of-
floading these operations to hardware devices which
implement the algorithms in silicon allows the sys-
tem CPU to continue to perform other tasks while
the cryptographic operations take place on another
chip. When the operations complete, the CPU will
be interrupted.

Since most popular cryptographic algorithms are
designed to be easy to implement in hardware
and building hardware to perform these operations
quickly is also fairly easy, hardware acceleration can
provide significant benefits at relatively low cost.

2.2 Advantages and Pitfalls

Acceleration hardware can provide a significant
performance boost on embedded devices whose
CPUs are clocked fairly low. Currently, many
of the embedded communications processors sup-
ported by FreeBSD even provide acceleration for
cryptographic operations in silicon on the same
chip as the CPU.

When the CPU can process cryptographic oper-
ations faster than acceleration hardware, it makes
little sense to use such hardware. In fact, trying
to use hardware acceleration when the host CPU is
faster will likely result in much poorer performance
than using the host CPU directly.

2.3 Kernel Subsystems

Currently, most cryptography consumers inside the
kernel make use of the opencrypto framework. It
must be noted that kernelspace consumers will au-
tomatically try to make use of hardware accelera-
tion if it is available. As described above, this may

be a problem if the system CPU is faster than the
available acceleration hardware.

On systems where most cryptographic operations
are in the kernel, such as IPsec VPN termina-
tion points or fileservers writing to encrypted block
devices, the use of hardware acceleration should
therefore be carefully considered.

Device drivers for acceleration hardware should
only be loaded if hardware acceleration is faster
than using the system CPU.

2.4 Userspace Processes

FreeBSD includes an OpenSSL “engine” around
/dev/crypto to provide access to acceleration
hardware for userspace processes. In addition to
the performance problems already described when
the system CPU is faster than available accelera-
tion hardware, enabling this engine comes with an-
other caveat: enabling the engine system-wide will
cause all cryptographic operations to be passed to
the opencrypto framework in the kernel.

It may be tempting to do so on slower sys-
tems where acceleration hardware is present and
faster than the system CPU. One should keep in
mind however, that acceleration hardware gener-
ally only supports a limited number of different
operations (often just one, even) and operations
not supported in hardware will be handled by the
software driver. While the software driver is over-
all fairly efficient, copying hardware back and forth
between userspace and the kernel is not efficient at
all. OpenSSL will often be much faster.

On such a system, the best solution is often to
limit the algorithms used by applications to those
supported by acceleration hardware or to limit the
use of the engine to those applications using sup-
ported algorithms.

3 Future Directions

3.1 Performance Pitfalls

While the advantages of hardware acceleration on
embedded devices are clear, the performance pit-
falls on generic hardware make it difficult to enable
acceleration by default.

A mechanism for measuring the relative perfor-
mance of available acceleration hardware against

2



software implementations would be very useful.
This would also be beneficial in the (perhaps un-
likely) scenario where multiple hardware accelera-
tion devices supporting an overlapping list of cryp-
tographic algorithms are present.

Similarly, a mechanism should be put in place
to prevent copying data back and forth between
userspace and the kernel when it can be deter-
mined that OpenSSL could perform the requested
operations faster in userspace than the opencrypto
framework could perform them in the kernel and/or
by offloading them to acceleration hardware.

3.2 Hardware Support

Currently, the acceleration features of the
opencrypto framework are mostly only useful
in an embedded context. There is currently no
device driver support for higher-end acceleration
hardware nor for the more sophisticated hardware
offloading mechanisms such higher-end hardware
systems require, such as the offloading of IPsec or
TLS entirely to hardware.

Adding support for more high-end hardware and
more sophisticated offloading methods would make
the framework much more widely deployable.

4 Conclusion

On slower embedded systems, the benefits of the
hardware acceleration features of the opencrypto
framework can be quite significant. On higher-end
systems however, the use of acceleration hardware
can negatively impact performance.

More work will need to be done to take into ac-
count the relative benefits of hardware acceleration
and to make the framework pick the best perform-
ing solution under all workloads, even if that means
not using available hardware.

Additionally, broader hardware support and sup-
port for more sophisticated hardware offloading
mechanisms would make the framework more use-
ful to applications outside the embedded world.

About the author

Philip Paeps is a software consultant and contrac-
tor based in Belgium. He spends most of his energy
on embedded systems. Currently, he is working
full-time on the network stack of a widely-deployed
internet gateway device.

Philip is a FreeBSD committer, contributing
mainly to the kernel, a member of the FreeBSD
security team and the FreeBSD core team secre-
tary. He has been using FreeBSD for longer than
he can remember.

3


